Edaphic Factors and Flooding Periodicity Determining Forest Types in a Topographic Gradient in the Northern Brazilian Amazonia

Main Article Content

L. A. Beltrán Alemán
R. I. Barbosa
I. Montero Fernández
L. C. S. Carvalho
P. E. Barni
R. L. C. Oliveira
J. F. Vale Jr.
S. A. Saravia Maldonado
N. E. Arriaga Pérez

Abstract

The Brazilian Amazonia is a region covered by an extensive mosaic of tropical forests conditioned by different topographical and hydro-edaphic features. Although studies relating environmental determinants of structure and floristic composition are systematically evolving in the region, there is no doubt that there are still information gaps due to the lack of research in peripheric areas of the Amazonia. The seasonally flooded areas of the state of Roraima situated on rio Branco-rio Negro basin, northern Brazilian Amazonia, still are deprived of such information. In this way, this work had as objective determine the physical and soil chemical attributes, and the flooding periodicity that characterize different forest types dispersed in a topographic gradient located in an area on the north of rio Branco-rio Negro basin. Soil samples (0-60 cm) were collected along a 2.7 km transect (31.1-64.8 m a.s.l.) crossing three different forest types: (i) mosaic between treed and forested shade-loving (La+Ld), (ii) area of ecological tension between forested shade-loving and open ombrophilous forest (LO) and (iii) open ombrophilous forest (Ab+As). The results indicated different soil classes and flooding periodicity for each forest type observed: Entisols Fluvents (La+Ld, 3-4 months flooded), Entisols Quartzipsamments (LO, 1-2 months) and Yellow Ultisols (Ab+As, no flooding). All analyzed soils were defined as nutrient-poor areas, especially those located on low altitude, characterized for higher hydrological restrictions (seasonal flooding) aggregating forest types of lower structural patterns (e.g. La+Ld). Soils on low altitude were also characterized as those with the highest percentage of fine sand and silt, while soil free of seasonal flooding (Yellow Ultisols) presented the highest levels of clay and coarse sand, always associated with the ombrophilous forests (higher structural patterns). These results improve our understanding of the environmental factors conditioning different forest types in this peripheral region of Amazonia, suggesting that ecosystems with higher hydro-edaphic restrictions are a strong indicator of forest types with lower structural patterns.

Keywords:
Oligotrophic ecosystems, water table, ecotone, phytophysiognomy

Article Details

How to Cite
Alemán, L. A. B., Barbosa, R. I., Fernández, I. M., Carvalho, L. C. S., Barni, P. E., Oliveira, R. L. C., Jr., J. F. V., Maldonado, S. A. S., & Pérez, N. E. A. (2019). Edaphic Factors and Flooding Periodicity Determining Forest Types in a Topographic Gradient in the Northern Brazilian Amazonia. International Journal of Plant & Soil Science, 28(6), 1-11. https://doi.org/10.9734/ijpss/2019/v28i630127
Section
Original Research Article

References

Carvalho ST, Domingues PE. Economic and deforestation scenario for the Brazilian Amazon between 2006 and 2030, Nova Economia. 2016;1(26):585-621.

Veloso HP, Rangel Filho ALR, Lima JCA. Classificação da vegetação brasileira adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. 1991;124.

Fearnside PM. Quantificação do serviço ambiental do carbono nas florestas amazônicas brasileiras. Oecologia Brasiliensis. 2008;12(4):743-756.

Fearnside PM, Ferraz J. A conservation gap analysis of Brazil's Amazonian vegetation. Conservation Biology. 1995; 9(5):1134-1147.

Nogueira EM, Yanai AM, Fonseca FO, Fearnside PM. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Global Change Biology. 2015; 21:1271–1292.

Castilho CV, Magnusson WE, Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management. 2006;234(1-3): 85-96.

Phillips OP, Vargas O, Monteagudo AL, Cruz AP, Zans M‡, Sánchez W, Yli-halla M, Rose, R. Habitat association among Amazonian tree species: A landscape-scale approach. Journal of Ecology. 2003; 91(1):757-775.

Laurance WF, Fearnside PM, Laurance, SG, Delamonica P, Lovejoy TE, Rankin-de-Merona JM, Chambers JQ, Gascon C. Relationship between soils and Amazon forest biomass: A landscape-scale study. Forest Ecology and Management. 1999; 18:127-138.

Franco-Moraesa J, Juliano AFB, Baniwa Flávia RC, Costa Helena P, Lima Charles R, Clement Glenn H, Shepard Jr. Historical landscape domestication in ancestral forests with nutrient-poor soils in north-western Amazonia. FORECO; 2019.

Phillips OL. Changes in the carbon balance of tropical forest: Evidence from long-term plots. Science. 1998;282(5388): 439-442.

Lewis SL, Phillips OL, Baker TR, Lloyd J, Malhi Y, Almeida S. Concerted changes in tropical forest structure and dynamics: Evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences. 2004;359(1443):421-436.

IPCC (Intergovernmental Panel on Climate Change). Guidelines for national green-house gas inventories. National green-house gas inventories programme. Eggleston HS, L. Miwa T, Ngara and K Tanabe (eds). Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies (IGES), JAPAN; 2006.

ter Steege H, Vaessen RW, Cárdenas-López D, Sabatier D, Antonelli A, Oliveira SM, Pitman NCA, Jørgensen PM, Salomão RP. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific reports. 2016;6:295-349.

Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A. Floristic patterns along a 43-km long transect in an Amazonian rain forest. Journal of Ecology. 2003;91:743–756.

Tuomisto H, Zuquim G, Cardenas G. Species richness and diversity along edaphic and climatic gradients in Amazonia, Ecography. 2014;37(11):1034-1046.

Silva LFSG, Castilho CV, Cavalcante CO, Pimentel TP, Fearnside PM, Barbosa RI. Production and stock of coarse woody debris across a hydro-edaphic gradient of oligotrophic forests in the northern Brazilian Amazon. Forest Ecology and Management. 2016;364:1-9.

Santos CPF, Valle G, Sestini F, Hoffman F, Dousseau L, Homem de Mello J. Mapeamento dos remanescentes e ocupação antrópica no Bioma Amazônia; 2007.
Available:http://marte.dpi.inpe.br/rep/dpi.inpe.br/[email protected]/2006/11.18.01.25?mirror=dpi.inpe.br
[Acesso em 02 dez. 2017]

Santos NMC, Vale Júnior JF, Barbosa RI. Florística e estrutura arbórea de ilhas de mata em áreas de savana do norte da Amazônia brasileira. Boletim do Museu Paraense Emílio Goeldi (Ciências Naturais). 2013;8(2):205-221.

Nascimento M, Carvalho L, Barbosa R, Villeda D. Variation in floristic composition, demography and above-ground biomass over a 20 year period in Amazonian Monodominant forest. Plant Ecology & Biodiversity. 2014;7:293-303.

Barni PE, Manzi AO, Condé TM, Barbosa RI, Fearnside PM. Spatial distribution of forest biomass in Brazil’s state of Roraima, northern Amazonia. Forest Ecology and Management. 2016;377:170-181.

Mendonça BA, Fernandes Filho EI, Schaefer CEGR, Simas FNB, do Vale Junior JF, Lisboa B de AR, de Mendonça JGF. Solos e Geoambientes do Parque Nacional do Viruá e entorno, Roraima: visão integrada da paisagem e serviço ambiental. Ciência Florestal. 2013;23:427-442.

Damasco G, Vicentini A, Castilho CV, Pimentel TP, Nascimento HEM. Disentangling the role of edaphic variability, flooding regime and topography of Amazonian white-sand vegetation. Journal of Vegetation Science. 2013;24(2): 384–394.

Mendonça BAF, Fernandes EIF, Schaefer C, Mendonca JGF, Vasconcelos BNF. Soil-vegetation relationships and community structure in a "terra-firme"-white-sand vegetation gradient in Virua National Park, northern Amazon, Brazil. Anais da Academia Brasileira de Ciências. 2017;89(2):1269-1293.

Cordeiro C, Rossetti DF, Gribel R, Tuomisto H. Impact of sedimentary processes on white-sand vegetation in an Amazonian megafan. Journal of Tropical Ecology. 2016;32(6):498-509.

Luizão FJ, Luizão RCC, Proctor J. Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol. 2007;192:209-224.

Suwa R, Sakai T, Santos J, Silva P, Kajimoto T, Ishizuka M, Higuchi N. Meaning of the topographic gradiente in stem diameter-Height allometry for precise biomass Estimation of a tropical humid forest in the central Amazon. JARQ. 2013;47:109-114.

Junk JW, Wittmann F, Schongart J, Piedade, MA. Classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts, Wetlands Ecol Manage. 2015;23:677-693.

Khorramdel S. Koocheki A, Nassiri M, RezaKhorasani M, Evaluation of carbon sequestration potential in corn fiels with different management systems. Soil & Tillage Research. 2013;133:25-31.

Scaranello, M.A da S, Alves LF, Vieira SA, de Camargo PB, Joly CA, Martinelli LA. Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Scientia Agricola. 2012;69:26-37.

Barbosa RI. Distribuição das chuvas em Roraima. In Barbosa RI, Ferreira EJG, Castellón EG (Eds.). Homem, Ambiente e Ecologia no Estado de Roraima. INPA-AM, Manaus (AM). 1997;325-335.

Alvares CA, Stape JL, Sentelhas PS, Gonçales PL, Sparovek G. Koppen’s climate classification map for Brazil, Meteorologische Zeitschrift. 2014;22:711-728.

Brazil-MME. Projeto RADAMBRASIL - Levantamento de Recursos Naturais. Ministério das Minas e Energia, Departamento Nacional de Produção Mineral, Rio de Janeiro. 1975;475.
Available:http://biblioteca.ibge.gov.br/visualizacao/livros/liv24025.pdf

USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; 1999.

Brazil-MME. Projeto RADAMBRASIL - Levantamento de Recursos Naturais. Ministério das Minas e Energia, Departamento Nacional de Produção Mineral, Rio de Janeiro. 1975;475.
Available:http://biblioteca.ibge.gov.br/visualizacao/livros/liv24025.pdf

EMBRAPA. Manual de Análises Químicas de Solos, Plantas e Fertilizantes. 2009; 624.

Santos HG. Sistema Brasileiro de Classificação de Solos. Embrapa Solos. Brazil. 2018;590.

Vale Jr JF, Schaefer CEGR. Solos sob Savanas de Roraima. Gênese, classificação e relações ambientes. Gráfica Ioris: Boa Vista-Roraima. Brazil. 2010;219.

Prance GT, Schubart HOR. Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand Campinas of the Lower Rio Negro. Brittonia. 1977;30(1):60-63.

Barbosa RI, Ferreira CAC. Biomassa acima do solo de um ecossistema de “campina” em Roraima, norte da Amazônia Brasileira. Acta Amazonica. 2004;34(4): 577-586.

Mendonça BAF, Fernandes Filho EI, Schaefer CEGR, Carvalho AF, Vale Jr JF, Corrêa GR. Use of geophysical methods for the study of sandy soils under Campinarana at the National Park of Viruá, Roraima state, Brazilian Amazonia. Journal of Soils and Sediments. 2014; 14(3):525-537.

Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimexik CI. Soils of Amazonia with particular reference to the Rain for sites. Biogeosciences Discussion. 2009;6:3851-3921.

Ferraz J, (Colocar todos os autores do trabalho). Distribuição dos solos ao longo de dois transectos em floresta primária ao Norte de Manaus (AM). In: Higuchi N, et al. Pesquisas florestais para a conservação da floresta e reabilitação de áreas degradadas da Amazônia. Instituto Nacional de Pesquisas da Amazônia. 1998;111- 143.

Magalhães RC, Gomes RCM. Mineralogy and chemistry of the lowland soil and its sensibilities in the process of lands falls in community Divino Espírito Santo (Amazonas, Brazil). Soc. & Nat. 2013;25: 609-621.

Santos HG, Carvalho Junior W, Dart RO, Aglio MLD, Sousa JS, Pares JG, Fontana A, Martins AL, Oliveira Ap. O novo mapa de solos do Brasil: legenda atualizada. Rio de Janeiro: Embrapa Solos. 2011;67.

Duivenvoorden JF. Patterns of tree speces richness in rain forests of the middle Caqueta area, Colombia, NW Amazonia. Biotropica. 1996;28:142-158.

Sacramento P, Rodrigues LRA, da Cruz MCP, Lugão SMB, de Campos FP, Centurion JF, Ferreira ME. Atributos químicos e físicos de um argissolo cultivado com Panicum maximum Jacq. Cv. IPR-86 Milênio, sob lotação rotacionada e adubado com nitrogêncio. R. Bras. Ci. Solo. 2008;32(1):183-193.

Scopel I, Peixinho DM, Souza MS, Mariano ZF, da Assunção HF. Formatação de areais e perspectivas de uso e manejo de Neossolos Quartzarênicos em Serranópolis (GO). Boletim Goiano de Geografia. 2005;25:11-27.

Ostertag R. effects of nitrogen and phosphorus availability on fine root dynamics in Hawaiian montane forests. Ecology. 2001;82:485-499.

Tsui CC, Chen ZS, Hsieh CF. Relation-ships between soil properties and slope position in a lowland rain forest of Southern Taiwan. Geoderma. 2004;123: 131-142.