Estimation of Leaf Area by Linear Dimensions in Coffea dewevrei

Main Article Content

Omar Schmildt
Enilton Nascimento de Santana
Vinicius de Souza Oliveira
Rafael Ruy Gouvea
Lucas Corrêa Souza
Alba Nise Merícia Rocha Santos
Sirlane Machado Silva
Karina Tiemi Hassuda dos Santos
Gleyce Pereira Santos
Cesar Jose Fanton
Sara Dousseau Arantes
Edilson Romais Schmildt

Abstract

The objective of this research was to select the equation that best estimates the leaf area of the coffee tree Coffea dewevrei, from the linear dimensions of the leaves. For this purpose, 140 leaves of adult plants were collected from the Capixaba Institute for Research, Technical Assistance and Rural Extension, in the city of Linhares, North of the State of Espírito Santo, Brazil. The length (L), the width (W), the product of the multiplication between the length and width (LW) and the leaf area observed (OLA) were determined from all leaves. For the modeling, a 100 leaves sample was used, where OLA was used as a dependent variable in function of L, W and LW as independent variable, being obtained the following models: linear first degree, quadratic and power. For the validation, a sample of 40 leaves was used, where the values of L, W LW were substituted in the equations generated in the modeling, thus obtaining the estimated leaf area (ELA). A simple linear equation model was fitted for each modeling equation relating ELA in function of OLA. The hypotheses H0: β0 = 0 versus Ha: β0 ≠ 0 and H0: β1 = 1 versus Ha: β1 ≠ 1, were tested using Student's t test at 5% probability. The mean absolute error (MAE), root mean square error (RMSE) and Willmott's index d for all equations were also determined. The best model that estimates the area of Coffea dewevrei was chosen through the following criteria: β0 not different from zero, β1 not different from one, MAE and RMSE values closer to zero and index d closer to the unit. The area of the leaves can be determined by its greater width (W), through the quadratic model equation ELA=-10.255+1.020(W)+1.293(W)2.

Keywords:
Coffea dewevrei, non-destructive method, mathematical models

Article Details

How to Cite
Schmildt, O., Santana, E. N. de, Oliveira, V. de S., Gouvea, R. R., Souza, L. C., Santos, A. N. M. R., Silva, S. M., Santos, K. T. H. dos, Santos, G. P., Fanton, C. J., Arantes, S. D., & Schmildt, E. R. (2019). Estimation of Leaf Area by Linear Dimensions in Coffea dewevrei. International Journal of Plant & Soil Science, 28(6), 1-8. https://doi.org/10.9734/ijpss/2019/v28i630129
Section
Original Research Article

References

Ferrão RG, Fonseca AFA, Ferrão MAG, Muner LH. Coffea canephora. In: Ferrão RG, Fonseca AFA, Ferrão MAG, Muner LH. Café Conilon. 2 ed. Vitoria: Incaper. 2017;37-53.

Davis AP, Tosh J, Ruch N, Fay MF. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data, implications of size, morphology, distribution and evolutionary history of Coffee. Botenical Journal of Rehinneon Society. 2011;167:1-21.
Available:https://doi.org/:10.1111/j.1095-8339.2011.01177.x

Fazuoli LC. Resistance of coffee to the root-knot nematode species Meloidogyne exigua and Meloidogyne incognita. ln: Colloque international sur la protection des cultures tropicales, Lyon. Resumes. Lyon, Fondation Scientifique de Lyon et du Sud.-Est. 1981;57.

Medina Filho HP, Carvalho A, Monaco LC. Melhoramento do cafeeiro: XXXVII. Observações sobre a resistência do cafeeiro ao bicho mineiro. Bragantia. 1977; 36(1):131-137. Available:https://doi.org/10.1590/S0006-87051977000100011

Otoboni CEM. Eficiência do controle de nematóides, ferrugem e bicho mineiro em cafeeiros. 102f. Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal; 2003.

Krug CA, Carvalho A. Melhoramento do cafeeiro V - Melhoramento por hibridação. Bragantia. 1952;12(4-6):141-152.
Available:https://doi.org/10.1590/S0006-87051952000200003

Medina DM, Conagin CHTM. Auto-incompatibilidade em Coffea dewevrei de Wild. Et Th. Dur. Bragantia. 1959;18(19): 283-293.
Available:https://doi.org/10.1590/S0006-87051959000100019

Carvalho A, Fazuoli LC, Teixeira AA, Guerreiro Filho O. Use of Excelsa coffee in blends with Arabica. Bragantia. 1990; 49(2):335-343. Available:https://doi.org/10.1590/S0006-87051990000200013

Flumignan DL, AdamI M, Faria RT. Leaf area of entire and damaged leaves of coffee determined by leaf dimensions and digital image. Coffee Science. 2008;3(1): 1-6.

Silva WZ, Brinate SVB, Tomaz MA, Amaral JFT, Rodrigues WN, Martins LD. Métodos de estimativa de área foliar em cafeeiro. Enciclopédia Biosfera. 2011;7(13):746-759.

Schmildt ER, Amaral JAT, Schmildt O, Santos JS. Comparative analysis of mathematical equations to estimate leaf area in coffee trees. Coffee Science. 2014; 9(2):155-167.

Toebe M, Cargnelutti Filho A, Loose LH, Heldwein AB, Zanon AJ. Leaf area of snap bean (Phaseolus vulgaris L.) according to leaf dimensions. Semina: Ciências Agrárias. 2012;33(1):2491-2500.
Available:https://doi.org/10.5433/1679-0359.2012v33Supl1p2491

Sarker SK, Das N, Chowdhury MQ, Haque MM. Developing allometric equations for estimating leaf area and leaf biomass of Artocarpus chaplasha in Raghunandan Hill Reserve, Bangladesh. Southern Forests, 2013;75(1):51-57. Available:https://doi.org/10.2989/20702620.2013.773601

Schmildt ER, Martin JJH, González JC. modelos alométricos para determinação da área foliar de uva de mesa ‘sugraone’ em casa de vegetação e área livre. Ciência e Técnica Vitinícola. 2014; 29(10):61-81.

Antunes WC, Pompelli MF, Carretero DM, DaMatta FM. Allometric models for nondestructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology. 2008;153:33-40. Available:https://doi.org/10.1111/j.1744-7348.2008.00235.x

Misgana Z, Daba G, Debela A. Modeling leaf area estimation for arabica coffee (Coffea arabica L.) grown at different altitudes of mana district, jimma zone. American Journal of Plant Sciences. 2018; 9:1292-1307. Available:https://doi.org/10.4236/ajps.2018.96095

Partelli FL, Vieira HD, Detmann E, Campostrini E. Estimative of leaf foliar area of coffea canephora based on leaf length. Revista Ceres. 2006;53(306):204-210.

Schmildt ER, Amaral JAT, Santos JS, Schmildt O. Allometric model for estimating leaf area in clonal varieties of coffee (Coffea canephora). Revista Ciência Agronômica. 2015;46(4):740-748.
Available:https://doi.org/10.5935/1806-6690.20150061

Monteiro JEBA, Sentelhas PC, Chiavegato EJ, Guiselini C, Santiago AV, Prela A. Cotton leaf area estimates based on leaf dimensions and dry mass methods. Bragantia. 2005;64(1):15-24.
Available:https://doi.org/10.1590/S0006-87052005000100002

Willmott CJ. On the validation of models. Physical Geography. 1981;2(2):184-194.
Available:https://doi.org/10.1080/02723646.1981.10642213

R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Vienna, Austria; 2018.

Ferreira EB, Cavalcanti PP, Nogueira DA. Package ‘ExpDes.pt’; 2018.

Levine DM, Stephan DF, Szabat KA. Estatistic for managers using Microsoft Excel: Global edition (8th ed., p. 728). London: Person; 2017.

Cargnelutti Filho A, Toebe M, Burin C, Fick AL, Casarotto G. Estimate of leaf area of forage turnip according to leaf dimensions. Bragantia. 2012;71(1):47-51.

Oliveira VS, Galote JKB, Damaceno IV, Furtado NS, Santos KTH, Santos JSH, Santos GP, Chisté H, Schmildt O, Czepak MP, Arantes SD, Vitória EL, Schmildt ER. Estimation of Single Leaf Area of Acacia mangium Willd. International Journal of Plant & Soil Science. 2019;28(3):1-7.
Available:https://doi.org/10.9734/ijpss/2019/v28i330107

Fascella G, Darwich S, Rouphael Y. Validation of a leaf area prediction model proposed for rose. Chilean Journal of Agricultural Research. 2013;73(1):73-76.
Available:http://doi.org/10.4067/S0718-58392013000100011

Borghezan M, Gavioli O, Pit FA, Silva AL. Mathematical models for leaf area estimative of the grapevine cultivars (Vitis vinifera L.). Ciência Técnica e Vitivinicola. 2010;25(1):1-7.

Toebe M, Souza RR, Mello AC, Melo PJ, Segatto A, Castanha AC. Leaf area estimation of squash ‘Brasileirinha’ by leaf dimensions. Ciência Rural. 2019;49:1-11.

Espindula MC, Passos AMA, Araújo LFB, Marcolan AL, Partelli FL, Ramalho AR. Indirect estimation of leaf area in genotypes of 'Conilon' coffee (Coffea canephora Pierre ex A. Froehner). Australian Journal of Crop Science. 2018; 12(6):990-994. Available:https://doi.org/10.21475/ajcs.18.12.06.PNE1090

Tsialtas JT, Koundouras S, Zioziou E. Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet-Sauvignon grapevine leaves. Photosynthetica. 2008;46(3):452-456.
Available:https://doi.org/10.1007/s11099-008-0077-x