Mineralogical Composition and Bioactive Molecules in the Pulp and Seed of Patauá (Oenocarpus bataua Mart.): A Palm from the Amazon

Main Article Content

S. A. M. Saravia
I. F. Montero
B. M. Linhares
R. A. Santos
J. A. F. Marcia

Abstract

The Patauá (Oenocarpus bataua Mart.) also known as Bataua or Patuá, is a palm native from the Amazon, consumed among the local populations as well as the wine obtained from its pulp with high energy value. It is a monocle palm tree reaching between 4-26 meters tall, distributed in the Amazon rainforest both in the wet forest of floodplains. The objective of this work was to study the proximal, mineralogical composition, as well as the total phenolic compounds and antioxidant activity of pulp and seed of Patauá. As for mineral composition, the high concentrations of sodium for the seed (84.21 mg 100 g-1) and pulp (71.21 mg 100 g-1), as well as magnesium values of 48.31 mg 100 g-1 for the seed and 41.23 mg 100 g-1 for the pulp. Among the micronutrients, the high concentration of iron in the pulp is 1.84 mg 100 g-1 for the pulps, and the manganese was 1.10 mg 100 g-1 for the seeds. The total phenolic compounds found in the seeds were relatively higher than for the pulps with values of 356.12 ± 0.12 mg GAEq g-1 and 321.03 ± 0.43 mg GAEq g-1, as well as the more significant antioxidant activity for the seeds than for the pulp. Carotenoids concentration in the seeds found of 2.52 ± 0.04 mg mL-1 and vitamin C concentrations were also quantified in trace concentrations, presenting the fruits of Patauá high biotechnological interest in the food and cosmetic industry.

Article Details

How to Cite
A. M. Saravia, S., F. Montero, I., M. Linhares, B., A. Santos, R., & A. F. Marcia, J. (2020). Mineralogical Composition and Bioactive Molecules in the Pulp and Seed of Patauá (Oenocarpus bataua Mart.): A Palm from the Amazon. International Journal of Plant & Soil Science, 31(6), 1-7. https://doi.org/10.9734/ijpss/2019/v31i630228
Section
Original Research Article

References

Trias-Blasi A, Baker WJ, Haigh AL, Simpson DA, Weber O, Wilkin P. A genus-level phylogenetic linear sequence of monocots. Taxon. 2015;64(1):552–581.

Govaerts R, Dransfields J. World checklist of Palms. Royal Botanic Gardens, Kew, Richmond, UK; 2005.

Eiserhardt WL, Svenning JC, Kissling WD, Balslev H. Geographical ecology of the palms (Aracaceae): Determinants of diversity and distributions across spatial scales. Ann. Bot. 2011;108:1391-1346.

Montúfar R, Laffargue A, Pintaud J-C, Avallone SHS, Dussert S. Oenocarpus bataua Mart. (Arecaceae): Rediscovering a source of high oleic vegetable oil from Amazonia. Journal of the American Oil Chemists’ Society. 2010;87:67-172.

Gomes–Silva DAP, Wadt LHO, Ehringhaus C. Ecologia e manejo de Patauá (Oenocarpus bataua Mart.) para produção de frutos e óleo. Embrapa Acre. Documentos, 88. Rio Branco-AC; 2004.

Lorenzi. 2004. Arvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil, Plantarum: Nova Edesa. 2002;2.

Ruiz RR, Alencar JC. Comportamento fenológico da palmeira de Patauá (Oenocarpus bataua) na reserva florestal Adolpho Ducke, Manaus, Amazonas, Brasil. Acta Amazônica. 2004;34:553-558.

Rezaire A, Robinson JC, Bereau D, Verbaere A, Sommerer N, Khan MK, Durand E, Fils-Lycaon BF. Amazonian palm Oenocarpus bataua (Patawa): Chemical and biological antioxidant activity-Phytochemical composition. Food Chemistry. 2014;149:62-70.

Miranda IPA, Rabelo A, Bueno CR, Barbosa EM, Ribeiro MNS. Frutos de Palmeiras da Amazônia. MCT-INPA; 2001.

Shanley P, Medina G. Frutíferas e Plantas Úteis na vida amazônica. Imazon; 2005.

Teixeira D, Da Rocha, GN. Extração e caracterização do óleo de patuá (Oenocarpus batua Mart) e comparação de suas propriedades com o óleo de oliva. Doctoral Thesis. Federal University do Pará, Belém; 2001.

Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA- Manuel o chemical analyzed of soils, plants and fertilizers. 2 Edition, Brasilia; 2009.

Wolfre K, Wu X, Liu RH. Antioxidant activity of apple peels. J. Agric Food Chem. 2003;51:609-614.

Miranda IPA, Rabelo A, Bueno CR, Barbosa EM, Ribeiro MNS. Frutos de Palmeiras da Amazônia. MCT-INPA; 2001.

Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. A procedure to the antiradical efficiency of polyphenolds. Journal of the Science of Food and Agriculture. 1998:76: 270-276.

Lichtenthaler HK, Buschmann C. Chloriphylls and carotenoids: Measurement and characterization by UV-VIS Spectroscopy. Current protocols in Food Analytical Chemistry. 2001;4:3-4.8.

Badolato MICB, Sabino M, Lamardo LCA, Antunes JLF. Comparative study of analytical methods for the determination of an ascorbic acid in the success of natural and industrialized fruits. Ciênc. Tecnol. Aliment. 1996;16:206-210.

Contreras-Gúzmán E, Strong IFC, Guernelli O. Determination of ascorbic acid (vitamin C), by reduction of copper ions. Química Nova. 1984;7:60-64.

Kessenich C. Alternative Choices for calcium supplementation. The Journal for Nurse Practitioners. 2008;4:36-39.

Roach S. Promovendo a saúde fisiológica. In: Enfermagem na saúde do idoso. 4 Ed. Rio de Janeiro: Guanabara Koogan; 2009.

Monteiro TH, Vannucchi H. Funções Plenamente reconhecidas de nutrientes Fósforo. São Paulo: Série de Publicações ILSI Brasil; 2010.

De França NA, Martini LA. Funções Plenamente reconhecidas de nutrientes Cálcio. São Paulo: Série de Publicações ILSI Brasil; 2014.

Cuppari L, Bazanelli AP. Funções Plenamente reconhecidas de nutrientes Potássio. São Paulo: Série de Publicações ILSI Brasil; 2010.

Caceres E, Garcia ML, Selgas ML. Design of a new cooked meat sausage enriched with calcium. Meat Science. 2006;73:368-377.

Smolin LA, Grosvenor MB. Nutrition: Science and applications with bloklet package. 1 Ed. Orlando: John Wiley & Sons Inc; 2007.

Fisberg M. Funções Plenamente reconhecidas de nutrientes Ferro. São Paulo: Série de Publicações ILSI Brasil; 2014.

Dietary Reference Intake for vitamin A, Vitamin K, Arsenic, boron, chromium, Copper, Iodine, Iron, Manganese, molybdenum, nickel, silicon, vanadium and Zinc. Capítulo 13. Washington: The National Academic Press; 2001.
Available:https://www.nap.edu/read/10026/chapter/15.
[Acesso em: 14 jan. 2019]

Hambidge MK. Dietary reference intakes for Zinc may require adjustment for Phytate intake based upon model Predictions. Journal Nutrition. 2008;138: 2363–2366.

Freitas EC, Silva ACM, da Silva MV. Análises de minerais zinco e manganês presentes na farinha do morango. Revista Brasileira de Obesidade, Nutrição e Emagrecimento. 2016;10:303-307.

Burton NC, Guilarte TR. Manganese neurotoxicity: Lessons learned from longitudinal studies in nonhuman primates. Environ Health Perspect. 2009;117:325-332.

Nielsen FH. Should bioactive trace elements not recognized as essential, but with benefical health effects, have intake recommendations. Journal Trace Element Medicine Biology. 2014;28:406-408.

Vasco C, Ruales J, Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry. 2008;111:816-823.

Rezaire A, Robinson JC, Bereau D, Verbaere A, Sommerer N, Khan MK, Durand E, Fils-Lycaon BF. Amazonian palm Oenocarpus bataua (“Patawa”): Chemical and biological antioxidant activity-Phytochemical composition. Food Chemistry. 2014;149:62-70.

Kang J, Li Z, Wu T, Jensen GS, Schauss AG, Wu X. Anti-oxidant capacities of flavonoid compounds isolated from açai pulp (Euterpe oleracea Mart.). Food Chemistry. 2010;122:610–617.

Aguiar JPL, Marinho HA, Rebêlo YS, Shrimpton R. Aspectos nutritivos de alguns frutos da Amazonia, Acta Amazonica. 1980;10:755–758.

Santos MDFG, Mamede RVS, Rufino MDSM, de Brito ES, Alves RE. Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants. 2015; 4:591–602.

Chin KY, Ima-Nirwana S. Vitamin C and bone health: Evidence from cell, animal and human studies (Review). Current Drug Targets. 2018;19:439- 450.