A Quantitative Index Based on Leaf Heteroblasty for Predicting Root Biomass in a Frequently Burned Savanna Species: Cussonia arborea Hochst. Ex A. Rich. (Araliaceae)
International Journal of Plant & Soil Science,
Page 220-237
DOI:
10.9734/ijpss/2021/v33i1930621
Abstract
Background: Biotic and abiotic disturbances such as frequent wildfires and herbivory contribute to maintain trees and grasses coexistence in savanna ecosystems. In comparison to stems and leaves, exposed to fire and herbivory, the roots, protected by being belowground, are less affected by these disturbances. Therefore, indirect estimation of belowground biomass (BGB) of savanna trees from simple allometric relations based on stem measurements can lead to major biases.
Aims: In this study we explored how the Leaf ontogenetic change index (LOCI), a quantitative index based on leaf heteroblastic development, can provide an accurate estimate of BGB in Cussonia arborea, a widespread species in West African humid savannas.
Methodology: We examined leaf morphometrics on post-fire resprouts of 40 individuals to assess whether LOCI can inform on plant age. We then analyzed by log-level regressions the variation of LOCI in relation to plant stem volume. Subsequently, we studied the variation of BGB according to stem volume, and as a function of both stem volume and LOCI, which allowed us to evaluate the contribution of LOCI to BGB estimation. BGB was obtained destructively by digging up roots and weighing total dry mass of 25 individuals including small and large trees. Statistical analyses were done with the R software.
Place and Duration of Study: Study was performed in the Lamto Scientific Reserve, Côte d’Ivoire, between May 2020 and June 2021.
Results: Using the stem volume as single explanatory variable of BGB, the regression model provided an adjusted R2 of 0.71. Association of the stem volume with LOCI increased the adjusted R2 from 0.71 to 0.90.
Conclusion: Combining LOCI with a measure of stem size provides better estimate of BGB in C. arborea compared to estimate based on stem size only. Since a large proportion of woody species in frequently disturbed environments exhibit an overall strategies promoting persistence, future works should evaluate how these strategies are modulated during ontogeny and can explain biomass variation over time.
Keywords:
- Non-destructive prediction
- belowground biomass
- Cussonia arborea
- disturbance
- heteroblasty
- ontogenetic traits
How to Cite
References
Available:https://doi.org/10.1016/S0169-5347(00)01906-6
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333(6045):988–993.
Available:https://doi.org/10.1126/science.1201609
Kindermann GE, McCallum I, Fritz S, Obersteiner M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica. 2008;42:387–396.
Available:http://pure.iiasa.ac.at/8616
Ciais P, Bombelli A, Williams M, Piao SL, Chave J, Ryan CM et al. The carbon balance of Africa: synthesis of recent research studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2011;369(1943):2038–2057.
Available:https://doi.org/10.1098/rsta.2010.0328
Koala J, Sawadogo L, Savadogo P, Aynekulu E, Heiskanen J, Saïd M. Allometric equations for belowground biomass of four key woody species in West African savanna-woodlands. Silva Fennica. 2017;51(3):1631.
Available:https://doi.org/10.14214/sf.1631
Bai Y, Zhang W, Jia X, Wang N, Zhou L, Xu S et al. Variation in root: Shoot ratios induced the differences between above and belowground mass–density relationships along an aridity gradient. Acta Oecologica. 2010;36(4):393–395.
Available:https://doi:101016/jactao201003007
Barbosa RI, Silva dos Santos JR, Souza da Cunha M, Pimentel TP, Fearnside PM. Root biomass, root: Shoot ratio and belowground carbon stocks in the open savannahs of Roraima, Brazilian Amazonia Australian Journal of Botany. 2012;60(5):405.
Available:https://doi:101071/bt11312
Paul KI, Larmour J, Specht A, Zerihun A, Ritson P, Roxburgh SH, et al. Testing the generality of below-ground biomass allometry across plant functional types Forest Ecology and Management. 2019;432:102–114.
Available:https://doiorg/101016/jforeco201808043
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. A global analysis of root distributions for terrestrial biomes. Oecologia. 1996;108:389–411.
Available:https://doi.org/10.1007/BF00333714
Addo-Danso SD, Prescott CE, Smith AR. Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review Forest Ecology and Management. 2016;359:332–351.
Available:https://doiorg/101016/jforeco201508015
Loiola PP, Scherer-Lorenzen M, Batalha MA. The role of environmental filters and functional traits in predicting the root biomass and productivity in savannas and tropical seasonal forests. Forest Ecology and Management. 2015;342:49–55.
Available:https://doi.org/10.1016/j.foreco.2015.01.014
Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root: shoot ratios in terrestrial biomes Global Change Biology. 2006;12(1):84 96.
Available:https://doiorg/101111/j136524862005001043x
Scholes RJ, Archer SR. Tree-grass interactions in savannas annual review of ecology and systematics. 1997;28(1):517–544.
Available:https://doiorg/101146/annurevecolsys281517
Ottaviani G, Molina-Venegas R, Charles-Dominique T, Campetella SG, Canullo R, Klimešová J. The Neglected Belowground Dimension of Plant Dominance. Trends in Ecology & Evolution. 2020;35 (9):763–766.
Available:https://doiorg/101016/jtree202006006
Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS et al. Determinants of woody cover in African Savannas Nature. 2005;438:846–849.
Available:https://doiorg/101038/nature04070
Gignoux J, Barot S, Menaut J-C, Vuattoux R. Structure, Long-Term Dynamics, and Demography of the Tree Community. In Abbadie L, Gignoux J, Le Roux X, Lepage M, editors. Lamto: Structure, functioning, and dynamics of a savanna ecosystem ecological Studies, Springer, New York, US. 2006;179:335–364.
Fidelis A, Lyra MF di S, Pivello VR. Above- and below-ground biomass and carbon dynamics in Brazilian Cerrado wet grasslands. Journal of Vegetation Science. 2013;24(2):356–364.
Available:https://doiorg/101111/j1654-1103201201465x
Swemmer A, Ward D. Patterns and determinants of woody plant growth in savannas. In Savanna Woody Plants and Large Herbivores. Scogings PF, Sankaran M, editors. John Wiley & Sons Ltd. 2019;331–438.
Available:https://doiorg/101002/9781119081111ch12
Murphy BP, Andersen AN, Parr CL. The underestimated biodiversity of tropical grassy biomes. Phil. Trans. R. Soc. B. 2016); 371: 20150319.
Available:https://doi.org/10.1098/rstb.2015.0319
Amara E, Heiskanen J, Aynekulu E, Pellikka PKE. Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone. Southern Forests. 2019;81(3):235–245.
Available:https://doi.org/10.2989/20702620.2018.1555947
Atsri HK, Kokou K, Abotsi KE, Kokutse AD, Cuni-Sanchez A. Aboveground biomass and vegetation attributes in the forest-savannah mosaic of Togo, West Africa. African journal of Ecology. 2020;00:1–13.
Available:https://doi.org/10.1111/aje.12758
Chabi A, Lautenbach S, Orekan VOA, Kyei-Baffour N. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin. Carbon Balance and Management. 2016;11(1):16.
Available:https://doi.org/10.1186/s13021-016-0058-5
Djagbletey ED, Logah V, Ewusi-Mensah N, Tuffour HO. Carbon stocks in the Guinea savanna of Ghana: estimates from three protected areas. Biotropica. 2018;50(2):225–233.
Available:https://doi.org/10.1111/btp.12529
Ganamé M, Bayen P, Ouédraogo I, Balima LH, Thiombiano A. Allometric models for improving aboveground biomass estimates in West African savanna ecosystems. Trees, Forests and People. 2021;4:100077.
Available:https://doi.org/10.1016/j.tfp.2021.100077
Koala J, Sawadogo L, Savadogo P, Aynekulu E, Heiskanen J, Saïd M. Allometric equations for belowground biomass of four key woody species in West African savanna-woodlands. Silva Fennica. 2017;51(3):1631.
Available:https://doi.org/10.14214/sf.1631
Mbow C, Verstraete MM, Sambou B, Diaw AT, Neufeldt H. Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan–Guinean ecosystems of Southern Senegal. Journal of Forest Research. 2014;19: 340–347.
Available:https://doi.org/10.1007/s10310-013-0414-1
Sawadogo L, Savadogo P, Tiveau D, Dayamba SD, Zida D, Nouvellet Y, Oden PC, Guinko S. Allometric prediction of aboveground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa. Journal of Forestry. Research. 2010;21(4):475–481.
Available:https://doi.org/10.1007/s11676-010-0101-4
Tchindebe A, Tchobsala, Amadou MLM, Ahmadou H, Adamou I. Species – specific allometric equations for predicting biomass of faidherbia albida (Del.) A. Chev. In the Sudano-sahelian Savannahs of Far-North, Cameroon. Journal of Agriculture and Ecology Research International. 2020; 21(6):33-44.
Available:https://doi.org/10.9734/jaeri/2020/v21i630151
Ciais P, Bombelli A, Williams M, Piao SL, Chave J, Ryan CM et al. The carbon balance of Africa: synthesis of recent research studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2011;369(1943): 2038–2057.
Available:https://doi.org/10.1098/rsta.2010.0328
Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA. Age states of plants of various growth forms: A review Journal of Ecology. 1980;68(2):675–696
Available:https://doiorg/102307/2259429
Zotz G, Wilhelm K, Becker A. Heteroblasty—A Review. Bot Rev. 2011;77:109–151.
Available:https://doiorg/101007/s12229-010-9062-8
England JR, Attiwill PM. Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F Muell. Trees. 2006;20:79–90.
Available:https://doiorg/101007/s00468-005-0015-5
Dang-Le AT, Edelin C, Le-Cong K. Ontogenetic variations in leaf morphology of the tropical rain forest species Dipterocarpus alatus Roxb ex G Don. Trees. 2013;27:773–786.
Available:https://doiorg/101007/s00468-012-0832-2
Allsopp A. Heteroblastic development in vascular plants. Advances in Morphogenesis. 1967;6:127–171.
Available:https://doiorg/101016/B978-1-4831-9953-550008-1
McLellan T. The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei (Begoniaceae). American Journal of Botany. 1993;80(7):796–804.
Available:https://doi:101002/j1537-21971993tb15295x
Climent J, Chambel MR, Pardos M, Lario F, Villar-Salvador P. Biomass allocation and foliage heteroblasty in hard pine species respond differentially to reduction in rooting volume. European Journal of Forest Research. 2011;130:841–850.
Available:https://doiorg/101007/s10342-010-0476-y
Beyschlag J, Zotz G. Heteroblasty in epiphytic bromeliads: Functional implications for species in understorey and exposed growing sites. Annals of Botany. 2017;120(5):681–692.
Available:https://doi:101093/aob/mcx048
N’Dri AB, Soro TD, Gignoux J, Dosso K, Koné M, N’Dri JK, et al. Season affects fire behavior in annually burned humid savanna of West Africa. Fire ecology. 2018;14:5.
Available:https://doiorg/101186/s42408-018-0005-9
Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H et al. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography. 2005;32(7):1107–1116.
Available:https://doi.org/10.1111/j.1365-2699.2005.01272.x
The International Plant Names Index and World Checklist of Selected Plant Families 2021. Cussonia arborea Hochst. ex A. Rich.
Accessed 10 July 2021.
Available:http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:90138-1
Chatelain C, Aké Assi L, Spichiger R, Gautier L Cartes de distribution des plantes de Côte d’Ivoire Mémoire de Botanique systématique, Conservatoire et jardin botaniques de la ville de Genève, Boissiera, Chambésy, Suisse. French. 2011;64:28.
Menaut JC, Abbadie L. Vegetation. In Abbadie L, Gignoux J, Le Roux X, Lepage M, editors. Lamto: Structure, functioning, and dynamics of a savanna ecosystem. Ecological Studies, Springer, New York, US. 2006;179:62–74.
Monnier Y. Les effets des feux de brousse sur une savane préforestière de Côte d’Ivoire Etudes Eburnéennes, Direction de la recherche scientifique de l’éducation nationale, Abidjan, Côte d’Ivoire. French. 1968;9:269.
N’Dri AB, Fongbe M, Soro TD, Gignoux J, Kone M, Dosso K, et al. Principaux indices de l’intensité du feu dans une savane Guinéenne d’Afrique de l’Ouest. International Journal of Biological and Chemical Sciences. French. 2018; 12(1):266–274.
Available:https://doi.org/10.4314/ijbcs.v12i1.21
N’Dri AB, Kpré AJ-N, Kpangba KP, Soro TD, Kouassi KV, Koffi KF et al. experimental study of fire behavior in annually burned humid savanna of West Africa in the context of bush encroachment. In: Leal FW, Pretorius R, de Sousa LO, editors. Sustainable Development in Africa. World Sustainability Series. Springer, Cham; 2021.
Available:https://doi.org/10.1007/978-3-030-74693-3_27
Daniell JW, Chappell WE, Couch HB. Effect of sublethal and lethal temperature on plant cells. Plant Physiology. 1969;44:1684–1689.
Available:https://doi.org/10.1104/pp.44.12.1684
MESURIM: Logiciel de mesure sur les images, version 20.04.13. Plateforme ACCES (Actualisation Continue des Connaissances des Enseignants en Sciences), Ecole normale supérieure (ENS), Lyon. French
R Core Team R: A language and environment for statistical computing, version 4.02. R Foundation for Statistical Computing, Vienna, Austria; 2020.
Crow TR, Schlaegel BE. A guide to using regression equations for estimating tree biomass Northern. Journal of Applied Forestry. 1988;5(1):15–22.
Available:https://doiorg/101093/njaf/5115
Henry M, Picard N, Trotta C, Manlay R, Valentini R, Bernoux M, et al. Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fennica. 2011;45(3):477–569.
Picard N, Saint-André L, Henry M. Manual for building tree volume and biomass allometric equations: From field measurement to prediction. FAO, Rome, and CIRAD, Montpellier; 2012.
Belsley DA, Kuh E, Welsch RE. Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley, New York; 1980.
Aiken LS, West SG. Multiple regression: Testing and interpreting interactions. Sage Publications, Thousand Oaks, CA; 1991.
Robinson C, Schumacker RE. Interaction effects: Centering, variance inflation factor, and interpretation issues. Multiple Linear Regression Viewpoints, 2009;35:6–10.
Sakai A, Sakai S. A test for the resource remobilization hypothesis: Tree sprouting using carbohydrates from above-ground parts. Annals of Botany. 1998;82(2):213–216.
Available:https://doiorg/101006/anbo19980672
Kozlowski TT. Carbohydrate sources and sinks in woody plants. Botanical Review. 1992;58:107–222.
Available:https://doi.org/101007/BF02858600
Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist. 2013;197(1):19–35.
Available:https://doi.org/10.1111/nph.12001
Barthélémy D, Caraglio Y. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany. 2007;99(3):375–407.
Available:https://doi.org/10.1093/aob/mcl260
Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere. 2011;2(4):1-13.
Available:https://doi.org/10.1890/ES1810-00204.00201
Klimešomá J, Klimeš L. Bud banks and their role in vegetative regeneration – a literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics. 2007;8:115–129.
Available:https://doi.org/10.1016/j.ppees.2006.10.00
Ott JP, Klimešová J, Hartnett DC. The ecology and significance of below-ground bud banks in plants. Annals of Botany. 2019;123(7, 4):1099–1118.
Available:https://doi.org/10.1093/aob/mcz051
Meier AR, Saunders MR, Michler CH. Epicormic buds in trees: A review of bud establishment, development and dormancy release. Tree Physiology. 2012;32(5):565-584.
Lamont BB, Enright NJ, He T. Fitness and evolution of resprouters in relation to fire. Plant Ecology. 2011;212:1945–1957.
Available:https://doi.org/10.1007/s11258-011-9982-3
UN-REDD programme. About reducing emissions from deforestation and forest degradation (REDD+).
Accessed 12 September 2021.
Available:https://www.unredd.net/about/what-is-redd-plus.html#
-
Abstract View: 359 times
PDF Download: 113 times