Effect of the Oligosaccharid Fraction of Fusarium oxysporum f. sp. vasinfectum on the Activity of Phenolic Metabolism Enzymes in Cotton Leaves

N’goran Ahou Régine Epouse Bla *

Institut de Gestion Agropastorale, Université Peleforo Gon Coulibaly, BP 1328 Korhogo, Côte d’Ivoire.

N’cho Achi Laurent

Centre National de Recherche Agronomique, Programme Maïs, Mil, Sorgho, BP 121 Ferkessédougou, Côte d’Ivoire.

Konan Yao Kouakou François

Laboratoire de Physiologie Végétale, UFR d’Agroforesterie, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire.

Kouakou Tanoh Hilaire

Laboratoire de Biologie et Amélioration des Productions Végétales, UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Cote d’Ivoire.

Kone Daouda

Laboratoire de Physiologie Végétale, UFR Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

*Author to whom correspondence should be addressed.


Abstract

The synthesis of secondary metabolites, notably phenolic compounds, is part of the plant's defense reactions. The enzymes of phenolic metabolism can constitute a parameter of measurement of the defense of the plants. The aim of this work is to evaluate the activity of phenolic metabolism enzymes and an antioxidant enzyme after treatment of cotton plants with a fungal elicitor. Cotton plants obtained from the cultivar Y764AG3 were treated with the oligosaccharide fraction (FOS) of Fusarium oxysporum f. sp. Vasinfectum (FOV). The extraction of the enzymes is carried out cold by grinding the leaves in extraction buffer in the presence of PVP (0.5 %) and 0.1 M sodium phosphate buffer. The supernatant obtained after centrifugation of the filtrate was purified with Dowex-2 in order to obtain the purified enzymatic fraction. This fraction was used for the determination of enzyme activity by reading the absorbances. The results showed that the activity of ammonia-lyase activity was higher in the treated plants than in the control. This reflects an increase in the biosynthesis of phenolic compounds in the treated plants. On the other hand, oxidoreductase activity was higher in control plants than in treated plants. This indicates a decrease in the degradation of phenolic compounds in the treated plants. This study revealed the existence of an active phenolic metabolism in the FOS-treated plants. Thus defence mechanisms are activated in plants treated with the oligosaccharide fraction of Fusarium oxysporum f. sp. Vasinfectum.

Keywords: Cotton plant; enzymes, Fusarium oxysporium f. sp. vasinfectum, oligosaccharide fraction, phenolic metabolisms


How to Cite

Bla, N. A. R. E., Laurent , N. A., François , K. Y. K., Hilaire , K. T., & Daouda, K. (2024). Effect of the Oligosaccharid Fraction of Fusarium oxysporum f. sp. vasinfectum on the Activity of Phenolic Metabolism Enzymes in Cotton Leaves. International Journal of Plant & Soil Science, 36(6), 399–409. https://doi.org/10.9734/ijpss/2024/v36i64642

Downloads

Download data is not yet available.

References

Sément G. Le Cotonnier en Afrique Tropicale. Le Technicien d’Agriculture Tropicale. Maisonneuve et Larose (éd.), Paris, France. 1986;133.

Vaissayre M. Dix années d’expérimentation pour la protection du cotonnier en Côte D’Ivoire (1981-1990). Document CIRAD /CA. 1994;3(93):1-57.

Faurie B, Cluzet S, et Mérillon JM. Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. Journal of Plant Physiology. 2009;166(17):1863-1877.

Ahuja I, Kissen R, et Bones AM. Phytoalexins in defense against pathogens. Trends Plant in Science. 2012;17(2):73-90.

Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, et Prathanturarug S. Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var candollei and P. candollei var mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture. 2010;103:333-342.

Li MY, Lan WZ, Chen C, et Yu LJ. The effects of Oligosaccharides and spores from Aspergillus niger on the defense responses of Taxus chinensis leaves In vitro. Journal of Phytopathology. 2003;151:540-545.

Thakur M, Et Sohal BS. Role of elicitors in inducing resistance in plants against pathogen infection: A Review. ISRN Biochemistry. 2013;1-10 Avaialble:http://dx.doi.org/10.1155/2013/762412.

Ngoran ARB, Yapo SE, Kouassi KM, Koffi E, Kouassi KN, Sekou D, Kone D, et Kouakou TH. Stimulation of polyphenols production in cell suspensions of cotton (Gossypium hirsutum l.) by oligosaccharide fraction of Fusarium oxysporum f. sp. vasinfectum, causal agent of fusarium wilt. International Journal of Agriculture and Crop Sciences. 2014;7:1570-1576.

Konan YKF, Kouassi KM, Kouakou KL, Koffi E, Kouassi KN, Sékou D, Koné M, Et Kouakou TH. Effect of Methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. vasinfectum in Cotton (Gossypium hirsutum L.). International Journal of Agronomy. 2014;1-11.

Avaialble:http://dx.doi.org/10.1155/2014/806439. Consulté le 15/05/2014.

N’goran épse Bla RA, Kouakou HT, Konan FKY, Camara B, Kouassi NK, et Koné D. Effet de la fractionoligosaccharidique de Fusarium oxysporum f. sp. vasinfectum sur la protection du cotonnier (Gossypium hirsutum L.) contre la fusariose. Agronomie Africaine. 2016;28(3):1–10.

Vessere RJ. Role of peroxyudase in cotton resistance to bacterial blight. Plant Science Letters. 1980;20:47-56

Nicholson RL, et Hammershmidt R. Phenolic compounds and their role in desease resistance. Annual Review of Phytopathology. 1992;30:369-389.

Morrelo JR, Romeo MP, Ramo T, et Motilva MJ. Evaluation of Lphenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Science. 2005;168:65-72.

Doumbia MLPI, Doumbia ML, Assi LN, Koffi BY, Tanoh HK. Peroxidases and polyphenoloxidases activities are linked to phenol content in cotton (Gossypium hirsutum L) leaves treated with methyl jasmonate and ethephon. Journal of Natural Product and Plant Ressources. 2017;7(2):44-50.

Navigué AY, Dan GLG, Seydou T, Idrissa C, Yao KFK, Nakpalo S, Tanoh HK, Michel Z. Effect of elicitation of cotton [(Gossypium hirsutum L.) cv. Y331B] with methyl jasmonate and ethephon in relation to secondary metabolites. International Journal of Multidisciplinary Research and Growth Evaluation. 2022;3(4):278-284.

El Bellaj M, et El Hadrami I. Role possible des phénols liés aux parois et des féruloyl et p-coumaroyl oxydases dans l’embryogénèse somatique du palmier dattier. In : Lin S-K., Pombo-Villar E. (ed). Proceedings of ECSOC-2, The Second International Electronic Conference on Synthetic Organic Chemistry; 1998.

CD-ROM edition ISBN 3-906980-01-4, MDPI Basel

Avaialble:http: //www.mdpi.org/ecsoc-2.htm, Sept. 1-30.

Constabel CP, Bergey DR, et Ryan CA. Systemic activates synthesis of wound inducible tomato leaf polyphénols oxidase via octadecanoid defence signalling pathway. Proceedings of the National Academy of Sciences. 1995;92:407-411.

Fanizza G, Bissignano V, Pollastro S, Miazzi M, etFaretra F. Effects of polysaccharides from Botryotinia fulkeliana (Botrytis cinerea) on in vitro culture of table and wine grapes (Vitis vinifera). Vitis. 1995;34:41-44.

Kouakou TH, Due EA, Kouadio NEJP, Niamke S, Kouadio YJ, Waffo TP, Decendit A, et Merillon JM. Purification and characterization of cell suspensions peroxidase from cotton (Gossypium hirsutum L.). Applied Biochemistry and Biotechnology. 2009;157:575-592.

Régnier T. Composés phénoliques du blé dur (Triticum turgidum L. var durum); Variation au cours du développement et de la maturation du grain relation avec l’apparition de la moucheture. Thèse de sciences et technique de langue doc, base de la production végétale. Université Montpellier II, France. 1994;177.

Blancas MEE, Chandia VE, et Zevallos LC. Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots. Journal of Food and Science. 2002;67(1): 146-154.

Coseteng MY, et Lee CY. Changes in apple polyphenol oxidase and polyphenol concentrations in relation to degree of browning. Journal of Food and Science. 1987;52:985-989.

Zhou Z, Sun X, et Kang JY. Protection contre la méthionine alcool lésions hépathiques par inhibition du stress oxydatif. Experimental Biology and Medicine. 2003;22(3):214-222.

N’goran ARB, Kouakou TH, Konan YKF, Koné M, Koné D. Stimulation of phenolic compounds production in cotton (Gossypium hirsutum L.) by oligosaccharide filtrates of Fusarium oxysporum f. sp. vasinfectum. Chemical Science Review and Letters. 2015;4(15): 788-797.

Gomez-Vasquez R, Day R, Buschmann H, Randles S, Beeching JR, et Cooper RM. Phenylpropanoids, phenylalanine ammonia-lyase and peroxidases in elicitorchallenged cassava (Manihot esculenta) suspension cells and leaves. Annals of Botany. 2004;94:87-97.

Politycka B. Phenolics and the activities of phenylalanine ammonia-lyase, phenol-β-glucosyltransferase and β-glucosidase in cucumber roots as affected by phenolic allelochemicals. Acta Physiologiae Plantarum. 1998;20(4):405-410.

Kouakou TH. Contribution à l’étude de l’embryogenèse somatique chez le cotonnier (Gossypium hirsutum L.) : Evolution de quelques paramètres biochimiques au cours de la callogénèse et de cultures de suspensions cellulaires. Thèse de doctorat 3è cycle, Université de Cocody, Abidjan Côte d’Ivoire. 2003;144.

Tognolli M, Penel C, Greppin H, et Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene. 2002;288:129-38.

Constabel CP, Yip L, Patton JJ. et Christopher M.E. Polyphenol oxidase from hybrid polar. Cloning and expression in reponse to wounding and herbivory. Plant Physiology. 2000;124:285-295.

Ricard-Forget FC. et Gauillard FA. Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (Pyrus communis cv. Williams) polyphenol oxidase and peroxidase: A possible involvement of peroxidase in enzymatic browning. Journal of Agricultural and Food Chemistry. 1997;45:2472-2476.

Ziouti A, EL Modafar C, EL Mandili A, EL Boustani E, et Macheix JJ. Identification des acides caféoyl-shikimiques des racines de palmier dattier, principaux composés fongitoxiques vis-à-vis de Fusarium oxysporum f. sp. Albedinis. Journal of Phytopathology. 1996;144:197-202.

Dai GH, Nicole M, Andary C, Martinez C, Bresson E, Boher B, Daniel JF, et Geiger JP. Flavonoids accumulate in cell walls, middle laminae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. Malvacearum and cotton. Physiological and Molecular Plant Pathology. 1996;49:285-306.

Hückelhoven R. Cell wall associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology. 2007;45:101-127.

Asada K. Ascorbate peroxidase- a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum. 1992;85:235-241.

Zhang J, et Kirkham MB. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant and Cell Physiology. 1994;35:785-791.

Kaminska-Rozek E. et Pukacki PM. Effect of water deficit on oxidative stress and degradation of cell membrane in needles of Norway spruce (Picea abies). Acta Physiologiae Plantarum. 2004;26: 431-442.

Vanacker H, Foyer CH. et Carver TLW. Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non- specific resistance. Planta. 1999;208:444-452.

Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S. et Foyer CH. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany. 2004;56:417-423.

Medhy MC. Active oxygen species in plant defense against pathogens. Plant Physiology. 1994;105:467-472.

Tenhaken R, Levine A, Brisson LF, Dixon RA. et Lamb C. Function of the oxidative burst in hypersensitive disease resistance. Proceedings of the National Academy of Sciences of USA. 1995;91:4158-4163.