Plant-Microbe Interaction in Improving Zinc Nutrition in Rice: A Review

Aiswarya Panda *

Department of Microbiology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India.

Periyasamy Panneerselvam

Department of Agriculture Microbiology, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India.

Bibhuti Bhusan Mishra

Department of Microbiology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India and Department of Microbiology, College of Basic Science and Humanities, OUAT, India.

*Author to whom correspondence should be addressed.


Zinc is an essential micro-nutrient that affects metabolic activities, including growth and cell proliferation in all living organisms. Zinc deficiency in agricultural soil has been increasing at an accelerated rate all over the world, leading to its deficiency in plants as well as humans. Zinc solubilising bacteria (ZSB) solubilise complex zinc in soil into plant absorbable compounds through several mechanisms such as the production of acid, chelating compounds, protons etc. further improving its bioavailability in plants and humans. Improving zinc nutrition through microbes is an effective measure to overcome its deficiency. ZSB with Plant Growth Promoting (PGP) traits can be an additional advantage as along with increasing zinc amount in plant it would also promote overall growth of plants through PGP traits and can act as a biocontrol agent against several crop pathogens. In this review we attempt to study the significance of zinc; status and deficiency of zinc in Indian soil and to understand how zinc solubilizing bacteria can prove to be an effective measure to increase zinc content in plants and overcome its deficiency.

Keywords: Zinc, rhizosphere, deficiency of Zn, zinc solubilising bacteria, soil bacteria, plant growth promoting rhizobacteria, Zn nutrition

How to Cite

Panda, A., Panneerselvam, P., & Mishra, B. B. (2024). Plant-Microbe Interaction in Improving Zinc Nutrition in Rice: A Review. International Journal of Plant & Soil Science, 36(6), 420–435.


Download data is not yet available.


(FAO) Food and Agriculture Organization of the United Nation, World Health Organization: Food & Nutrition Division; 2001. Available:

Alloway BJ. Zinc in Soils and Crop Nutrition. 2nd Edition, IZA and IFA, Brussels, Belgium and Paris, France; 2008.

Das A, Patel DP, Ramkrushna GI, Munda GC, Ngachan SV, Choudhury BU, Mohapatra KP, Rajkhowa DJ, Kumar R, Panwar AS. Improved rice production technology—for resource conservation and climate resilience (Farmers’ Guide). Ext Bull No. 78. ICAR Research Complex for NEH region, Umiam, Meghalaya. 2012;29.

United Nations, Department of economic and social affairs, World Population Prospects;2019. Available:

Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R. Potential for increasing the conter and bioavailability of Fe, Zn and Ca in plants of human nutrition. J Sci Food Agri. 2000;80: 861-879.

Karak T, Singh UK, Das S, Das DK, Kuzyakov Y. Comparative efficacy of ZnSO4 and Zn-EDTA application for fertilization of rice (Oryza sativa L.). Arch Agron Soil Sci. 2005;51:253-264. Available:

Singh S, Chhabra R, Sharma A, Bisht A. Harnessing the Power of Zinc-Solubilizing Bacteria: A Catalyst for a Sustainable Agrosystem. Bacteria. 2024;3(1):15-29. Available:

Saravanan VS, Rohini Kumar M, Sa TM. Microbial zinc solubilization and their role on plants. Bacteria in agrobiology: Plant Nutrient Management. 2011:47-63. Available:

Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol. 2017;8:2593–2593. Available:

Krithika S, Balachandar D. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci. 2016;7. DOI:

Pahari A, Mishra BB. Antibiosis of Siderophore Producing Bacterial Isolates against Phythopathogens and Their Effect on Growth of Okra. Int J Curr Microbiol App Sci. 2017;6:1925-1929. DOI:

Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M, Fakhar M, et al., Zinc solubilizing bacteria for zinc biofortification in cereals: A step toward sustainable nutritional security. Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement. 2018:203-227. Available:

Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification, Plant Soil. 2008;302: 1–17

Efe L, Yarpuz E. The effect of zinc application methods on seed cotton yield, lint and seed quality of cotton (Gossypium hirsutum L.) in east Mediterranean region of Turkey. Afr J Biotechnol. 2013;10:8782–8789.

Irshad M, Gill MA, Aziz T, Ahmed I. Growth response of cotton cultivars to zinc deficiency stress in chelator-buffered nutrient solution. Pak J Bot. 2004;36:373–380.

Vallee BL, Falchuk KH. The biochemical basis of zinc physiology, Physiol Rev. 1993;73:79–118.

Chen W, He Z, Yang X, Feng Y. Zinc efficiency is correlated with root morphology, ultrastructure, and antioxidative enzymes in rice. J Plant Nutr. 2009;32:287–3.

Chen W, Feng Y, Chao Y. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol. 2008;55: 400–409.

Ho E, Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004;15:572-8. DOI:

Hotz C, Brown KH. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004;25:91–204.

Sharma A, Shankhdhar D, Shankhdhar SC. Potassium-solubilizing microorganisms: Mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Sharma, A., Patni, B., Shankhdhar, D., Shankhdhar, S.C., Zinc - an indispensable micronutrient. Physiol Mol Biol Plants. 2016;19:11-20. DOI:

Verma JP, Jaiswa DK, Meena VS, Meena R. Current need of organic farming for enhancing sustainable agriculture. J Clean Prod. 2015

Meena VS, Maurya BR, Meena RS. Residual impact of well grow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bang J Bot. 2015; 44:143–146.

Shrivastava M, Srivastava PC, D’Souza SF. KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi. 2016:221–234. Available:

Capdevila DA, Wang J, Giedroc DP. Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface. J Biol Chem. 2016;30:20858-20868. DOI:

White CL. In Zn in soils and plants (A. D. Robson ed.), Kulwer Academic Pub., Dordrecht, The Netherlands; 1993.

Singh MV. Micro nutritional problem in soils of India and improvement for human and animal health. Indian J Fert. 2009;5:11-16.

Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK. Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, The Bioscan. 2013;8:931–935.

Meena RS, Meena VS, Meena SK, Verma JP. Towards the plant stress mitigate the agricultural productivity: A book review. J Clean Prod. 2015;102:552–553.

Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R. Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, 2016; 225–266. Available:

Masood S, Bano A. Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms, in Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi. 2016;137–147. Available:

Fletcher MP, Gershwin BE, Keen CL, Hurley L. Trace element deficiencies and immune responsiveness in human and animal models. In: Chandra RK (ed) Nutrition and immunology. Alan R. Liss, Inc., New York. 1988;215–239.

Chirase NK, Hutcheson DP, Thompson GB. Feed intake, rectal temperature, and serum mineral concentrations of feedlot cattle fed zinc oxide or zinc methionine and challenged with infectious bovine rhinotracheitis virus. J Anim Sci. 1991;69: 4137–4145.

Schlute EE. Soil and Applied Zinc, A2528 Understanding Plant Nutrients University of Wisconsin-Extension;2004, Available:

Rengel Z. Availability of Mn, Zn and Fe in the rhizosphere, J Soil Sci Plant Nutr. 2014; 15. Availeable:

Neue HU, Lantin RS. Micronutrient toxicities and deficiencies in rice, in Yeo AR, Flowers TJ, eds, Soil Mineral Stresses: Approaches to Crop Improvement, Springer-Verlag, Berlin. 1994;175–200.

Patnaik MC, Raju AS, Raj GB. Effect of soil moisture regimes on zinc availability in a red sandy loam soil of Andhra Pradesh. J Ind Soc Soil Sci. 2008;56:452-453.

Hazra GC. Zinc adsorption in soils as influenced by different soil management practices. Soil Sci. 1997; 162: 713–721.

Yoo MS, James BR. Zinc extractability as a function of pH in organic waste-amended soils. Soil Sci. 2002;167: 246–259.

Bloodnick E. Role of Zinc in Plant Culture. 2022. Available:

Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP. Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer, Cham. 2017;367–395. Available:

He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y. Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol. 2010; 44:1–5.

Saravanan V, Madhaiyan M, Thangaraju M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere. 2007;66: 1794–1798.

Hussain D, Haydon MJ, Wang YE, Wong SM, Sherson J, Young J, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell. 2004;16:1327–1339.

Vidyashree DN, Ramaiah M, Panneerselvam P, Saritha B, Ganeshamurthy A. Isolation and Characterization of Zinc Solubilizing Bacteria from Stone Quarry Dust Powder. 2016;3078-3081.

Paul ES, Clark FE. Soil microbiology and biochemistry., Academic, San Diego; 1989.

Pérez-García A, Romero D, de Vicente A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol. 2011;22:187-193. Available:

Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol. 2014;73:87–96.

Ramirez CA, Kloepper JW, Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils. 2010;46:835-844.

Vachon P, Tyagi RD, Auclair JC, Wilkinson KJ. Chemical and biological leaching of aluminium from red mud. Environ Sci Technol. 1994;28:26–30. Available:

Sayer JA, Raggett SL, Gadd GM. Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res. 1995;99: 987-993. Available:

Di Simine C, Sayer J, Gadd G. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils. 1998;28:87–94. Available:

Altomare C, Norvell AWA, Björkman AT, Harman AGE. Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma harzianum. J Appl Environ Microbiol. 1999;65:2926-2933 DOI:

Fasim F, Ahmed N, Parsons R, Gadd GM. Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett. 2002;213:1–6.

Saravanan SV, Sudalayandy RS, Savariappan. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazilian J Microbiol. 2003; 34: 121-125.

Martino E, Perotto S, Parsons R, Gadd GM. Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem. 2003;35:133-141. Available: Available:

Fomina M, Alexander IJ, Hillier S, Gadd GM. Zinc Phosphate and Pyromorphite Solubilization by Soil Plant-Symbiotic Fungi. Geomicrobiol. 2004;21:351-366. DOI:

Madhaiyan M, Saravanan VS, Jovi DBSS, Lee H, Thenmozhi R, Hari K, Sa T. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India Microbiol Res. 2004; 159: 233-243. Available:

Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J Soil Sci Plant Nutr. 2014;14. Available:

Anitha S, Padma DSN, Sunitha KK. Isolation and identification of zinc solubilizing fungal isolates from agriculture fields. Indian J Agric Sci. 2015; 85: 1638–1642

Kumar A, Maurya BR, Raghuvanshi R, Meena VS, Islam MT. Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J Plant Growth Regul; 2017. Available:

Gontia-Mishra I, Sapre S, Tiwari S. Zinc solubilizing bacteria from rhizosphere of rice as a prospective modulator of zinc biofortification in rice. Rhizosphere. 2017; 3:185–190

Mumtaz MZ, Maqshoof A, Jamil M, Hussain T. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res. 2017;202:51-60. Available:

Othman NMI, Othman R, MohdSaud H, Wahab PEM. Effects of root colonization by zinc-solubilizing bacteria on rice plant (Oryza sativa MR219) growth. Agric Nat Res. 2017;51:532–537.

Vidyashree DN, Muthuraju R, Panneerselvam P. Evaluation of zinc solubilizing bacterial (ZSB) strains on growth, yield and quality of tomato (Lycopersicon esculentum). Int J Curr Microbiol App Sci. 2018;7:1493–1502.

Dinesh R, Srinivasan V, Hamza S, Sarathambal C, Gowda SA, Ganeshamurthy AN, Gupta SB, Nair VA, Subila KP, Lijina A, Divya VC. Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma. 2018;1(321):173-86.

Khanghahi MY, Ricciuti P, Allegretta I, Terzano R, Crecchio C. Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions. Environ Sci Pollut Res. 2018;25:25862–25868.

Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, Zeenat MA, Mirza S, Karim M. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci. 2019;26:1061-1067. Available: Available:

Bhatt K, Maheshwari DK. Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech. 2020;10. Available:

Nepomuceno RA, Brown CB, Gargarino AMP, Pedro MS, Brown MB. Crop Science Society of the Philippines Growth Enhancement of Rice (Oryza sativa L.) by Zinc-Solubilizing Bacteria Isolated from Vesicular-Arbuscular Mycorrhizal Root Inoculant (VAMRI). Philipp J Crop Sci. 2020;45:34-40.

Upadhyay H, Gangola S, Sharma A, et al. Contribution of zinc solubilizing bacterial isolates on enhanced zinc uptake and growth promotion of maize (Zea mays L.). Folia Microbiol. 2021;66: 543–553 Available:

Bhakat K, Chakraborty A, Islam E. Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil. World J Microbiol Biotechnol. 2021; 37. Available:

Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. Plant Growth-Promoting Rhizobacteria Isolated from the Jujube (Ziziphus lotus) Plant Enhance Wheat Growth, Zn Uptake, and Heavy Metal Tolerance. Agriculture. 2021;11. Available:

Othman NMI, Othman R, Zuan AT, Shamsuddin AS, Zaman NBK, Sari NA, Panhwar QA. Isolation, Characterization, and Identification of Zinc-Solubilizing Bacteria (ZSB) from Wetland Rice Fields in Peninsular Malaysia. Agriculture. 2022;12. Available:

Macwan AH, Shelat HN, Jhala YK, Shah SN. Utilization of zinc solubilizing bacteria for better growth and development of summer groundnut (Arachis hypogaea L.). The Pharma Innov J. 2022;11:1027-1035.

Desai S, Natarajan A, Naga RS. Zinc solubilizing Bacillus sp (SS9) and Enterobacter sp (SS7) promote mung bean (Vigna radiata L.) growth, nutrient uptake and physiological profiles, Lett Appl Microbiol. 2023;76. Available:

Srithaworn M, Jaroenthanyakorn J, Tangjitjaroenkun J, Suriyachadkun C, Chunhachart O. Zinc solubilizing bacteria and their potential as bioinoculant for growth promotion of green soybean (Glycine max L. Merr.). PeerJ. 2023;10(11):e15128.

Yadav RC, Sharma SK, Varma A, Singh UB, Kumar A, Bhupenchandra I, Rai JP, Sharma PK, Singh HV. Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Front Microbiol. 2023; 4(14):1210938.

Rahman A, Ahmad MA, Mehmood S, Rauf A, Iqbal A, Ali B, Ullah M, Ali M, Mohamed HI, Uddin I. Isolation and Screening of Zn (Zn) Solubilizing Rhizosphere Bacteria from Different Vegetations for Their Ability to Improve Growth, Zn Uptake, and Expression of Zn Transporter Genes in Tomato. Curr Microbiol. 2024;81(3):1-3.

Mader P, Kiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, et al. Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Bio Chem. 2010;43:609–619.

Saravanan VS, Subramoniam SR, Raj SA. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazilian J Microbiol. 2004; 35:121-5.

Panhwar QA, Naher UA, Jusop S, Othman R, Latif MA, Ismail MR. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth. PLoS One. 2014;9. Available:

Costerousse B, Schonholzer-Mauclaire L, Frossard E, Thonar C. Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Appl Environ Microbiol. 2018;84:e01715–e01717.

Vidyashree DN, Muthuraju R, Panneerselvam P, Mitra D. Organic acids production by zinc solubilizing bacterial isolates. Int J Curr Microbiol App Sci. 2018;7:626–633.

Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V. Role of arbuscular mycorrhizal fungus (Glomus intraradices) (fungus aided). Agric Biotechnol Sustain Dev. 2009;1:29–38.

Choudhury R, Srivastava S. Zinc Resistance Mechanisms in Bacteria. Curr Sci. 2001;81:768–75, Available: Accessed 21 Jan. 2023.

Obrador A, Novillo J, Alvarez JM. Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci Soc Am J. 2003;67:564 –572.

Whiting SN, Souza MD, Terry N. Rhizosphere bacteria mobilize Zn for hyper accumulator by Thlaspi caerulescens. Environ Sci Technol. 2001;35:3144 –3150.

Tariq M, Hameed S, Malik KA, Hafeez FY. Plant root associated bacteria for zinc mobilization in rice. Pak J Bot. 2007;39:245–253.

Burkert B, Robson A. Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular–arbuscular mycorrhizal fungi in a root–free sandy soil. Soil Biol Biochem. 1994;26: 1117–1124

Sunithakumari K, et al. Zinc Solubilizing Bacterial Isolates from the Agricultural Fields of Coimbatore, Tamil Nadu, India. Curr. Sci. 2016;110:196–205. Available:

Rani N, Kaur G, Kaur S, Mutreja V, Upadhyay SK, Tripathi M. Comparison of diversity and zinc solubilizing efficiency of rhizobacteria obtained from solanaceous crops under polyhouse and open field conditions. Biotech Gene Engineer Rev; 2022. Available:

Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009; 63: 541-56. DOI:

Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. (Cairo), 2012;19. DOI:

PANDA A, DAS L, MISHRA BB. Zinc solubilization and potash mobilization by potent plant growth promoting bacteria isolated from Odisha. Annals of Plant and Soil Res. 2023; 25(2): 285-96.

Bouis H, Welch RM, Biofortification - A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010;50.

Ali M, Ahmed I, Tariq H, Abbas S, Zia MH, Mumtaz A, Sharif M. Growth improvement of wheat (Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. Front Plant Sci. 2023;12(14):1140454.

Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn hyper-accumulating plants. Plant J. 2009;57:1116–1127.

Guerinot ML. The ZIP family of metal transporters, Biochimica et Biophysica Acta (BBA) – Biomembranes. 2000;1465:190-198. Available:

Krishna ATP, Maharajan T, Roch V, Ignacimuthu S, Ceasar SA. Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. Front Plant Sci. 2020;11. Available:

Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, et al. Arabidopsis IRT3 is a zinc−regulated and plasma membrane localized zinc/iron transporter. New Phytol. 2009;182: 392–404. DOI:

Milner MJ, Seamon J, Craft E, Kochian LV. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot. 2013; 64: 369–381. DOI:

Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U.S.A. 1996; 93:5624–5628. DOI:

Zhao H, Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem. 1996;271:23203–23210. DOI:

Evens NP, Buchner P, Williams LE, Hawkesford MJ. The role of ZIP transporters and group F bZIP transcription factors in the Zn−deficiency response of wheat (Triticum aestivum). Plant J. 2017;92:291–304. DOI:

Huang S, Wang P, Yamaji N, Ma JF. Plant nutrition for human nutrition: Hints from Rice research and future perspectives. Mol Plant. 2020;13:825–835. Available:

Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol. 2010;73:507– 517.

Lee S, Kim SA, Lee J, Guerinot ML, An G. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells. 2010;29:551– 558.

Kavitha P, Kuruvilla S, Mathew M. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Biochem. 2015;97:165–174. DOI:

Inaba S, Kurata R, Kobayashi M, Yamagishi Y, Mori I, Ogata Y., et al., Identification of putative target genes of bZIP19, A transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J. 2015;84:323–334. DOI:

Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, et al. OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot. 2005;56:3207–3214. Available:

Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa NK. Accumulation of starch in Zn-deficient rice. Rice. 2012;5:1-8.

Sasaki A, Yamaji N, Ma JF. Transporters involved in mineral nutrient uptake in rice. Journal of experimental botany. 2016;67(12):3645-53.

Bashir K, Ishimaru Y, Nishizawa NK. Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil. 2012;36:189–201. DOI: