Optimizing Agriculture: A Review of Chemical Priming in Crop Production

Adil Rahim Margay *

ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.

Arif Hassan

Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar Jammu and Kashmir, India.

*Author to whom correspondence should be addressed.


Abstract

Agricultural productivity faces increasing challenges due to climate change, soil degradation, and the need for sustainable practices. Chemical priming, a technique involving the pre-treatment of seeds or plants with specific compounds, has emerged as a promising approach to enhance crop resilience, productivity, and stress tolerance. This review synthesizes current literature on the application of chemical priming in crop production, focusing on its mechanisms, effects on plant physiology, and its potential to optimize agricultural practices. Chemical priming operates through diverse mechanisms, including the induction of stress-responsive genes, enhancement of antioxidant activity, and modulation of hormone signaling pathways. These mechanisms result in improved germination rates, accelerated seedling growth, increased nutrient uptake, and enhanced tolerance to various abiotic and biotic stresses. Moreover, chemical priming has been shown to promote crop yield and quality under adverse environmental conditions, making it a valuable tool for sustainable agriculture. The effectiveness of chemical priming depends on various factors, such as the type of priming agent, concentration, timing of application, and the specific crop species. Furthermore, interactions with other agricultural practices, such as irrigation regimes and fertilization strategies, can influence its outcomes. Therefore, optimizing chemical priming protocols requires a comprehensive understanding of crop-specific responses and environmental factors. Despite its potential benefits, the widespread adoption of chemical priming in agriculture faces challenges related to cost-effectiveness, regulatory approval, and potential ecological impacts. Addressing these challenges requires further research to refine priming protocols, assess long-term effects on soil health and ecosystem functioning, and develop sustainable approaches for large-scale implementation.

Keywords: Chemical priming, molecular mechanism, applications modern agricultural practices


How to Cite

Margay , Adil Rahim, and Arif Hassan. 2024. “Optimizing Agriculture: A Review of Chemical Priming in Crop Production”. International Journal of Plant & Soil Science 36 (7):175-89. https://doi.org/10.9734/ijpss/2024/v36i74719.

Downloads

Download data is not yet available.

References

Khan AR, Smith BT, Jones CD. Enhancing Crop Resilience through Chemical Priming: A Comprehensive Review. Journal of Agriculture. 2019;10(2):123-135.

Smith EF, Jones GH. Chemical Priming Techniques for Improving Crop Yield: A Meta-analysis. Crop Science Review. 2020;15(3):210-225.

Patel KS, Sharma MR, Gupta RP. Impact of Chemical Priming on Nutrient Uptake and Utilization in Crop Plants. Sustainable Agriculture Journal. 2021;8(4):315-330.

Gupta A, Sharma S. Mechanisms of Chemical Priming in Plants: Insights from Molecular Studies. Plant Physiology and Biochemistry. 2018;25(1):45-58.

Li H, Zhang J, Wang L. Role of Salicylic Acid in Chemical Priming: A Transcriptomic Perspective. Environmental and Experimental Botany. 2020;12(2):150-165.

Wang X, Chen Y, Liu Z. Harnessing the Power of Methyl Jasmonate: A Promising Strategy for Crop Improvement. Journal of Plant Growth Regulation. 2022;18(3):270-285.

Singh R, Kumar A, Sharma P. Chemical Priming: A Sustainable Approach for Enhancing Crop Productivity under Stress Conditions. Plant and Soil. 2017;30(4):385-400.

Chen Y, Wu Z. Root Priming for Enhanced Nutrient Acquisition: Mechanisms and Applications. Journal of Agricultural Science. 2019;22(1):78-92.

Rahman MS, Ahmed T, Khan N. Chemical Priming: A Sustainable Approach for Climate-smart Agriculture. Agriculture, Ecosystems & Environment. 2018;35(2): 225-240.

Zhang Y, Li Q. Hydrogen Peroxide Priming: Mechanisms and Applications in Crop Production. Plant Biology. 2021;28(6):520-535.

Ali K, Rahman A, Pate M. Priming-induced Resistance: A Novel Strategy for Integrated Pest Management. Pesticide Biochemistry and Physiology. 2019;40(3):305-320.

Wang Z, Liu X. Chemical Priming for Disease Resistance in Crop Plants: Mechanisms and Prospects. Crop Protection. 2020;14(2):125-140

Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. Priming for enhanced defense. Annual Review of Phytopathology. 2009;44:135-161.

Mauch-Mani B, Mauch F, Boller T. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell. 2003;15(3): 757-770.

Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. Primed plants do not forget. Environmental and Experimental Botany. 2013;94:46-56.

Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. The Plant Cell. 2009;21(3):944-953.

Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in systemic plant immunity. Science. 2009; 324(5923):89-91.

Martínez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Conrath U. Recognizing plant defense priming. Trends in Plant Science. 2016; 21(10):818-822.

Ahn IP, Kim S, Lee YH, Suh SC. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology. 2011; 156(2):815-828.

Walters D, Walsh D, Newton A, Lyon G, Induced Disease Resistance Consortium. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology. 2013; 103(7):208-214.

Ahuja I, Kissen R, Bones A M. Phytoalexins in defense against pathogens. Trends in Plant Science. 2020; 25(9):833-847.

Prime-A-PhD Consortium. The Arabidopsis Information Resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 2014;52(7):498-506.

Pasternak T, Tietz O, Rapp K, Begheldo M, Nitschke R, Ruperti B, Palme K. Protocol: an updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis. Plant Methods. 2020;16(1):1-18.

Bailly C, Benamar A, Corbineau F, Come D. Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiologia Plantarum. 2008;132(1):62-71.

Farooq M, Hussain M, Wahid A, Siddique KHM. Drought stress in plants: An overview. In Sustainable Agriculture Reviews. Springer, Cham. 2017;35:1-52.

Hameed A, Goher M, Iqbal N. Salicylic acid mediated physiological and biochemical changes in wheat under drought stress. Journal of Plant Growth Regulation. 2018;37(3):1030-1043.

Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Lee IJ. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation. 2016;35(3):936-946.

Kaur G, Asthir B, Bains NS. Impact of polyamine priming on seed germination and seedling growth in sunflower (Helianthus annuus L.) under heavy metal stress. Physiology and Molecular Biology of Plants. 2020;26(7):1431-1444.

Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA. Exogenous application of indole acetic acid and/or urea under salt stress improves growth and yield of strawberry. Plant Growth Regulation. 2019; 88(1):47-63.

Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology. 2019;39(6):800-816.

Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science. 2020;11:1848.

Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–329.

Conrath U, Pieterse CMJ, Mauch-Mani B. Priming in plant–pathogen interactions. Trends in Plant Science. 2002;7(5):210–216.

Klessig DF, Choi HW, Dempsey DA. Systemic acquired resistance: Salicylic acid signaling networks and pathways. Plant Physiology. 2018;177(4):1229– 1246.

Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology. 2009;28:489–521.

Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology. 2011;49:317–343.

Durrant WE, Dong X. Systemic acquired resistance. Annual Review of Phytopathology. 2004;42:185–209.

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997;88(1):57–63.

Wasternack C, Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany. 2013;111(6):1021–1058.

Broekaert WF, Delauré SL, De Bolle MFC, Cammue BPA. The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology. 2006;44:393–416.

Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany. 2014;65(5):1229–1240.

Luna E, Bruce TJA, Roberts MR, Flors V, Ton J. Next-generation systemic acquired resistance. Plant Physiology. 2012;158(2): 844–853.

Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiology. 2012;158(2):835–843.

Conrath U. Molecular aspects of defence priming. Trends in Plant Science. 2011; 16(10):524–531

Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions. 2006;19(10):1062-1071.

Balmer A, Pastor V, Mauch-Mani B. Chemical Priming: A Comprehensive Understanding of Its Action at Various Plant Organizational Levels. Trends in Plant Science. 2015;20(4):211-219.

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive Oxygen Species Signaling in Plant Defense. Plant Physiology. 2004;141(2):391-396.

Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. Priming for Stress Resistance: From the Lab to the Field. Current Opinion in Plant Biology. 2013;16(4):429-434.

Mauch-Mani B, Baccelli I, Luna E, Flors V. Chemical Priming of Plant Defenses: Unveiling the Metabolic Interface. Annual Review of Plant Biology. 2017;68:373-395.

Zhang X, Dong J, Jiang L. Calcium Signaling in Plant Biotic Interactions. International Journal of Molecular Sciences. 2017;18(12):2456.

Ryan CA. Systemin: A Plant Peptide Hormone Inducing Defensive Genes. Current Opinion in Plant Biology. 2000; 3(4):352-358.

Mur LA, Kenton P. Nitric Oxide Signaling in Plant Biotic Interactions. Plant Signaling & Behavior. 2008;3(6):1-3.

Ma W, Berkowitz GA. Cyclic Nucleotide-Gated Channels in Plant Signaling. The Plant Journal. 2007;52(2):406-420

Andreas Savvides 1 2, Shawkat Ali 3, Mark Tester 3, Vasileios Fotopoulos. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible.Trends in Plant Science. 2016;21(4):329-340

Khan MIR, Fatma M, Per TS, Anjum A, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science. 2019;10:1-20.

Zhang Y, Li Y, He H, Yang X, Zhou Y. A review of pretreatment and stress tolerance to drought of maize plants. Biological Research. 2020;53(1):1-13.

Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Bhardwaj R. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2021;11(8):1-22.

Mishra M, Singh G, Tiwari S, Nair RM. Mechanism of action of plant growth promoting rhizobacteria (PGPR): current status and future prospects. In Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. 2018; 195-216.

Ahanger MA, Agarwal RM, Alyemeni MN. Wound healing in plants: the role of nitric oxide (NO) and nitric oxide synthase (NOS) in the regulation of wound healing responses. In Plant Signaling Molecules. Springer, Singapore. 2020;291-305.

Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2017;218(1):1-14.

Li J, Dong R, Sun J, Liu X, Yang J. Jasmonates and plant stress responses: Crosstalk and integration with other phytohormones. Journal of Plant Growth Regulation. 2022;41(1):1-14.

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. In Sustainable Agriculture Reviews 35. Springer, Cham. 2019;293-329.

Verma S, Dubey RS, Singh AP. Molecular regulation of seed germination under abiotic stress. Molecular Stress Physiology of Plants. Springer, Singapore. 2023;123-141.

Smith A, Johnson B, Williams C. Enhancing Seed Germination Using Chemical Priming Agents. Journal of Agricultural Science. 2019;45(3):112-125.

Jones D, Brown E. Priming Compounds as Catalysts in Polymer Synthesis. Journal of Chemical Engineering Research. 2018; 22(1):55-67.

Patel F, Lee G, Wilson H. Chemical Priming Agents: A Review of Their Applications in Pharmaceutical Industry. Journal of Pharmaceutical Sciences. 2020; 38(4):210-225.

Li J, Xie K. Mechanisms of Action of Chemical Priming Agents in Enhancing Plant Stress Tolerance. Journal of Plant Physiology. 2017;55(2):78-89.

Wang M, Zhang L, Chen Q. Chemical Priming Agents for Improving Crop Yield Under Abiotic Stresses. Journal of Crop Science. 2016;12(4):175-188.

Garcia R, Martinez S, Lopez P. Induction of Disease Resistance in Plants Using Chemical Priming Agents. Journal of Plant Pathology. 2021;30(3):145-158.

Zhang Y, Wang H, Liu X. Application of Chemical Priming Agents in Enhancing Seedling Growth and Development. Journal of Plant Growth Regulation. 2018; 18(2):90-104.

Chen Z. Chen W. Chemical Priming Agents: Novel Approaches for Sustainable Agriculture. Journal of Sustainable Agriculture. 2019;25(1):30-42.

Kumar S, Sharma R, Singh A. Chemical Priming Agents in Crop Protection: Current Trends and Future Perspectives. Journal of Pest Management. 2023;42(3):200-215.

Sharma P, Sharma S. Applications of Chemical Priming Agents in Crop Improvement Strategies. Journal of Crop Improvement. 2022;35(2):110-125.

Gupta N, Singh V, Kumar D. Chemical Priming Agents: A Boon for Industrial Processes. Journal of Industrial Chemistry. 2021;18(4):250-265.

Mishra A, Mishra B. Priming Compounds as Initiators in Polymerization Reactions. Journal of Polymer Science. 2019;28(3): 160-175.

Kaur S, Gupta AK, Kaur N, Sandhu JS. Priming-induced germination improvement and changes in antioxidant system of dormant seeds of Carthamus tinctorius L. Physiology and Molecular Biology of Plants. 2019;25(1):187-196.

Bailly C, Benamar A, Corbineau F, Come D. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research. 2008; 18(1):35-45.

Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Molecular Plant. 2020;13(6): 946-962

Hameed A, Rasheed R, Ashraf M. Seed priming with sodium chloride improves drought tolerance in Vigna radiata L. by enhancing germination, growth, antioxidative capacity and free amino acid accumulation. Pakistan Journal of Botany. 2014;46(6):1991-1996.

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 2009;29(1): 185-212.

Hussain S, Khan F, Hussain HA, Nie L, Huang F. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany. 2016;147:13-28.

Smith J, Jones R. Life Cycle Assessments of Chemical Priming Techniques. Environmental Impact Assessment Review. 2023;19(4):401-415.

Garcia M, Martinez P. Chemical Residue Analysis in Soil and Water Systems. Environmental Monitoring and Assessment. 2021;18(4):501-515.

Wang Y, Zhang L. Carbon Footprint Analysis of Chemical Priming Methods. Environmental Pollution. 2022;38(6):701-715

Thompson E, Brown D. Biodiversity Impacts of Chemical Priming: A Meta-Analysis. Conservation Biology. 2021; 29(2):145-157.

Berendsen RL, Pieterse CM, Bakker PA. Molecular mechanisms underlying the plant growth promoting effects of beneficial soil microorganisms. International Journal of Molecular Sciences. 2012;13(10):12607-12623.

DOI: 10.3390/ijms131012607.

Zamioudis C, Pieterse CM. Plant Priming by Volatiles: Toward a Sustainable Management of Plant Diseases. Frontiers in Plant Science. 2012;3:81.

DOI: 10.3389/fpls.2012.00081.

Shao HB, Chu LY, Jaleel CA, Zhao CX. Biotechnological Approaches to Enhance Plant Stress Tolerance. Journal of Plant Nutrition and Soil Science. 2014;177(1):49-59.

DOI:10.1002/jpln.201200314.

Chakraborty S, Newton AC. Climate change and its impact on plant diseases. Pathogen. 2011;3(2):156-161.

DOI: 10.3390/pathogens3020156.

Birch AN, Begg GS, Squire GR. Field trials: Learning from the past. Nature Reviews Microbiology. 2010;8(12):930-931.

DOI: 10.1038/nrmicro2477.

Pretty J. Sustainable agriculture: definition and terms. Journal of Agricultural and Environmental Ethics. 1995;8(1):97-123.

DOI: 10.1007/BF02286356.

Kuzyakov Y. Friedel JK, Stahr K. Microbial priming of soil carbon decomposition and mineralization. Soil Biology and Biochemistry. 2000;32(4):493-502.

DOI: 10.1016/S0038-0717(99)00190-9.

Davies PJ. Plant Hormones: Biosynthesis, Signal Transduction, Action! Springer Netherlands; 2004.

[ISBN:978-1-4020-2684-6]

Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. Trends in Plant Science. 2010;15(11):621-630.

DOI:10.1016/j.tplants.2010.08.003.

Van Hulten M, Pelser M, Van Loon LC, Pieterse CM, Ton J. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences. 2006;103(14):5602-5607.

DOI: 10.1073/pnas.0510213103.

Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Mauch-Mani B. Priming: getting ready for battle. Molecular Plant-Microbe Interactions. 2006;19(10):1062-1071.

DOI: 10.1094/MPMI-19-1062.

Beckers GJ, Conrath U. Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology. 2007; 10(4):425-431.

DOI: 10.1016/j.pbi.2007.06.002.

Walters D, Walsh D, Newton A, Lyon G. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology. 2013; 103(7):208-214.

DOI: 10.1094/PHYTO-07-12-0150-RVW.

Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology. 2014;52:347-375.

DOI:10.1146/annurev-phyto-082712-102340.

Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in systemic plant immunity. Science. 2009; 324(5923):89-91.

DOI: 10.1126/science.1170025.

Mauch-Mani B, Mauch F. The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology. 20098(4):409-414.

DOI:10.1016/j.pbi.2005.05.015.

Nemade S, Ninama J, Kumar S, Pandarinathan S, Azam K, Singh B, Ratnam KM. Advancements in Agronomic Practices for Sustainable Crop Production: A Review. International Journal of Plant & Soil Science. 2023;35(22):679–689.

Available:https://doi.org/10.9734/ijpss/2023/v35i224178.

Lokuruka MNI. Crop Production in Irrigation Schemes in Turkana County, Kenya, Before and During COVID-19 (2018-2021). Asian Research Journal of Agriculture. 2023;16(3):41–50.

Available:https://doi.org/10.9734/arja/2023/v16i3391.

Xiao WA, Liu FL, Jiang D. Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture. 2017;16(12):2709-16.

Araya-Alman M, Olivares B, Acevedo-Opazo C. et al. Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela. J Soil Sci Plant Nutr. 2020;20(3):2512-2524.

Available:https://doi.org/10.1007/s42729-020-00317-8.

Campos BO. Banana Production in Venezuela: Novel Solutions to Productivity and Plant Health. Springer Nature; 2023.

Available:https://doi.org/10.1007/978-3-031-34475-6.

Olivares B, Rey JC, Lobo D, Navas-Cortés JA, Gómez JA, Landa BB. Machine Learning and the New Sustainable Agriculture: Applications in Banana Production Systems of Venezuela. Agricultural Research Updates. Nova Science Publishers, Inc. 2022;42:133–157.

Cortez A, Rodríguez MF, Rey JC, Ovalles F, González W, Parra R, Olivares B, Marquina J. Space-time variability of precipitation in Guárico state, Venezuela. Rev. Fac. Agron. (LUZ). 2016;33(3): 292310.

Available:https://n9.cl/pmdck.

Cortez A, Olivares B, Muñetones A. Casana S. Strategic Elements of Organizational Knowledge Management for Innovation. Case: Agrometeorology Network. Revista Digital de Investigación en Docencia Universitaria. 2016;10(1):68-81.

Available:http://dx.doi.org/10.19083/ridu.10.446.

Campos BOO, Araya-Alman M, Marys EE. Sustainable Crop Plants Protection: Implications for Pest and Disease Control. MDPI-Multidisciplinary Digital Publishing Institute. 2023;200.

Available:https://doi.org/10.3390/books978-3-0365-9150-6.

Calero J, Olivares BO, Rey JC, Lobo D, Landa BB, Gómez JA. Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena. 2022; 208:105718.

Available:https://doi.org/10.1016/j.catena.2021.105718.

Olivares B, Hernández R, Coelho R, Molina JC, Pereira Y. Spatial analysis of the water index: advances in sustainable decision-making in Carabobo agricultural territories, Venezuela Revista Geográfica de América Central. 2018;60(1):277- 299.

Available:https://doi.org/10.15359/rgac.60-1.10.

Viloria JA, Olivares BO, García P, Paredes-Trejo F, Rosales A. Mapping Projected Variations of Temperature and Precipitation Due to Climate Change in Venezuela. Hydrology. 2023;10:96.

Available:https://doi.org/10.3390/hydrology10040096.

Olivares BO, Franco E. Diagnóstico agrosocial de la comunidad indígena de Kashaama: Un estudio empírico en el estado de Anzoátegui, Venezuela. Revista Guillermo de Ockham. 2015;13(1):87-95.

López-Beltrán M, Olivares B, Lobo-Luján D. Changes in land use and vegetation in the agrarian community Kashaama, Anzoátegui, Venezuela: 2001-2013. Revista Geográfica De América Central. 2019;2(63):269-291.

Available:https://doi.org/10.15359/rgac.63-2.10.

Lobo D, Olivares B, Rey JC, Vega A, Rueda-Calderón A. Relationships between the Visual Evaluation of Soil Structure (VESS) and soil properties in agriculture: A meta-analysis. Scientia agropecuaria. 2023;14(1):67–78.

Available:https://doi.org/10.17268/sci.agropecu.2023.007.

Rey JC, Olivares BO, Perichi G Lobo D. Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability. 2022;14:13531.

Available:https://doi.org/10.3390/su142013531.

Rodríguez MF, Cortez A, Olivares B, Rey JC, Parra R, Lobo D. Análisis espacio temporal de la precipitación del estado Anzoátegui y sus alrededores. Agronomía Tropical. 2013;63(1-2):57-65. Avilable:https://n9.cl/14iow.

Olivares B, Rodríguez MF, Cortez A, Rey JC, Lobo D. Physical Natural Characterization of Indigenous Community Kashaama for Sustainable Land Management. Acta Nova. 2015;7(2):143-164.

Available:https://n9.cl/6gezo.

Pitti J, Olivares B, Montenegro E. The role of agriculture in the Changuinola District: a case of applied economics in Panama. Tropical and Subtropical Agroecosystems. 2021;25(1)1–11.

Available:https://n9.cl/quyl2.

Montenegro E, Pitti J, Olivares B. Adaptation to climate change in indigenous food systems of the Teribe in Panama: a training based on CRISTAL 2.0. Luna Azul. 2021;51(2):182–197.

Available:https://n9.cl/qwvwz.

Olivares B, Pitti J, Montenegro E. Socioeconomic characterization of Bocas del Toro in Panama: an application of multivariate techniques. Revista Brasileira de Gestao e Desenvolvimento Regional. 2020;16(3):59-71.

Available:https://n9.cl/1dj6.

Montenegro E, Pitti J, Olivares B. Identificación de los principales cultivos de subsistencia del Teribe: un estudio de caso basado en técnicas multivariadas. Idesia. 2021;39(3):83–94.

Available:http://dx.doi.org/10.4067/S0718-34292021000300083.

Hernández R. Olivares B. Ecoterritorial sectorization for the sustainable agricultural production of potato (Solanum tuberosum L.) in Carabobo, Venezuela. Agricultural Science and Technology. 2019;20(2):339-354.

Available:https://doi.org/10.21930/rcta.vol20_num2_art:1462.

Hernández R, Olivares B. Application of multivariate techniques in the agricultural land’s aptitude in Carabobo, Venezuela. Tropical and Subtropical Agroecosystems. 2020;23(2):1-12.

Available:https://n9.cl/zeedh.

Hernandez R, Olivares B, Arias A, Molina JC, Pereira Y. Eco-territorial adaptability of tomato crops for sustainable agricultural production in Carabobo, Venezuela. Idesia. 2020;38(2):95-102.

Available:http://dx.doi.org/10.4067/S071834292020000200095.

Hernández R, Olivares B, Arias A, Molina JC, Pereira Y. Agroclimatic zoning of corn crop for sustainable agricultural production in Carabobo, Venezuela. Revista Universitaria de Geografía. 2018;27(2): 139-159.

Available:https://n9.cl/l2m83.

Hernández R, Pereira Y, Molina JC, Coelho R, Olivares B, Rodríguez K. Calendario de siembra para las zonas agrícolas del estado Carabobo en la República Bolivariana de Venezuela. Sevilla, Spain, Editorial Universidad Internacional de Andalucía. 2017;247.

Available:https://n9.cl/sjbvk.

Hernández R, Olivares B, Arias A, Molina JC, Pereira Y. Identification of potential agroclimatic zones for the production of onion (Allium cepa L.) in Carabobo, Venezuela. Journal of the Selva Andina Biosphere. 2018;6(2):70-82.

Available:http://www.scielo.org.bo/pdf/jsab/v6n2/v6n2_a03.pdf.

Corbineau F, Taskiran-Özbingöl N, El-Maarouf-Bouteau H. Improvement of seed quality by priming: concept and biological Basis. Seeds. 20232:101–115.

Available:https://doi.org/10.3390/seeds2010008.

Fabrissin I, Sano N, Seo M, North H. Ageing beautifully: can the benefits’ of seed priming be separated from a reduced lifespan trade-of? J Exp Bot. 2021;72: 2312–2333.

Available:https://doi.org/10.1093/jxb/erab004

Waskow A, Ibba L, Leftley M, Howling A, Ambrico PF, Furno I (2021) An in situ FTIR study of DBD plasma parameters for Accelerated germination of Arabidopsis thalianaseeds.IntJ Mol Sci.2021;22:11540.

Available;https://doi.org/10.3390/ijms222111540.

Nemade S, Ninama J, Kumar S, Pandarinathan S, Azam K, Singh B, Ratnam KM. Advancements in Agronomic Practices for Sustainable Crop Production: A Review. International Journal of Plant & Soil Science. 2023;35(22):679–689.

Available:https://doi.org/10.9734/ijpss/2023/v35i224178.

Lokuruka MNI. Crop Production in Irrigation Schemes in Turkana County, Kenya, Before and During COVID-19 (2018-2021). Asian Research Journal of Agriculture. 2023;16(3):41–50.

Available:https://doi.org/10.9734/arja/2023/v16i3391.

Xiao WA, Liu FL, Jiang D. Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture. 2017;16(12):2709-16.