Optimizing Rice Yields: A Mahbubnagar Perspective

D. Bhanusree *

Agricultural College Palem, PJTSAU, India.

Gangannagari Karthik

Agricultural College Palem, PJTSAU, India.

Akhil K

Agricultural College Palem, PJTSAU, India.

Rakesh Jammugani

Agricultural College, Warangal, PJTSAU, India.

*Author to whom correspondence should be addressed.


Abstract

Aim: The main aim of this study is to calculate the potential yields of rice by using Oryza.apsim module and the yields gaps in Mahbubnagar district, for 30 years (1993-2022).

Study Area: The study area for this research is Mahbubnagar district of Telangana State, India.

Methodology: Employing the crop simulation model- Agricultural Production Systems Simulator, specifically Oryza.apsim, this study assesses potential and actual yields over 30 years (1993-2022).

Results: Results highlight cultivar-specific potential yields and quantify two types of yield gaps. The decreasing trend in one of these gaps indicates progress but underscores persistent challenges.

Conclusion: This research provides valuable insights for improving rice productivity and addressing food security concerns in Mahbubnagar and similar regions.

Keywords: Rice, potential yield, agricultural production systems simulator, oryza.apsim, potential farm yield


How to Cite

Bhanusree, D., Gangannagari Karthik, Akhil K, and Rakesh Jammugani. 2024. “Optimizing Rice Yields: A Mahbubnagar Perspective”. International Journal of Plant & Soil Science 36 (7):266-73. https://doi.org/10.9734/ijpss/2024/v36i74729.

Downloads

Download data is not yet available.

References

FAO. World Food and Agriculture –Statistical Yearbook 2022; 2020. Available:https://doi.org/10.4060/cb4477en

Boling AA, Bouman BAM, Tuong TP, Konboon Y, Harnpichitvitaya D. Yield gap analysis and the effect of nitrogen and water on photoperiod-sensitive Jasmine rice in north-east Thailand, NJAS: Wageningen Journal of Life Sciences. 2011;58:11-19. DOI: 10.1016/j.njas.2010.05.

Dilla A, Smethurst PJ, Barry K, Parsons D, Denboba M. Potential of the APSIM model to simulate impacts of shading on maize productivity. Agroforestry System. 2018;92:1699-1709. Available:https://doi.org/10.1007/s10457-017-0119-0.

Fernando MEKK, Amerasekara DABN, Amarasingha RK, Suriyagoda LDB, Marambe B, Galagedara LW, Silva GLLP, Punyawardena R, Parsons D, Meinke H. Validation of APSIM for long duration rice varieties in different agro-climatic zones of Sri Lanka. Building Productive, Diverse and Sustainable Landscapes; 2015. Available:www.agronomy2015.com.au.

Nirmala B. Yield gap analysis of rice in Raichur district of Karnataka. Karnataka Journal of Agricultural Sciences. 2009;22(1):238-239.

Pinga ES, Gomez D, Fatty LKM, Onyemma JO. Effect of labour scarcity on rice production and Yieldin Guma Local Government Area of Benue State. Journal of Experimental Agriculture International. 2022;44(9):61–70.

Available:https://doi.org/10.9734/jeai/2022/v44i930850

Uke C, Ochiaka PC, Mgbakor DNM. Value addition assessment of rice production in Anambra East Agricultural Zone of Anambra State. Asian Research Journal of Agriculture. 2018;9(3):1–5.

Available:https://doi.org/10.9734/ARJA/2018/41883

Balasubramanian V, Sie M, Hijmans RJ, Otsuka K. Increasing rice production in sub-Saharan Africa: challenges and opportunities. Advances in Agronomy. 2007;94:55-133.

Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z. Yield gap analysis with local to global relevance-A review. Field Crops Research. 2013;143:4-17. Available:http://dx.doi.org/10.1016/j.fcr.2012.09.009.

Liu Z, Yang X, Hubbard KG, Lin X. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology; 2012. DOI: 10.1111/j.13652486.2012. 02774.x

Jing SJ, Qing ZW, Guo ZZ, Kang D, Jie KL, Hua WY. A new feasible method for yield gap analysis in regions dominated by smallholder farmers, with a case study of Jiangsu Province, China. Journal of Integrative Agriculture. 2021;20(2):460–469.

Kumbar PC, Patil RH, Kubsad VS, Naik R. Yield gap analysis of major crops grown in northern transition zone of Karnataka. Journal of Farm Sciences. 2020;33(4):464-469.

Akinseye F, Hakeem A, Traore CS, Samuel O, Birhanu Z. Improving sorghum productivity under changing climatic conditions: A modeling approach. Field Crops Research. 2020; 246. Available:https://doi.org/10.1016/j.fcr.2019.107685.

Gaydon DS, Singh B, Wang E, Poulton PL, Ahmad B, Ahmed F, Akhter S, Hochman Z, Choudhury BU, Das A, Subash N. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research. 2017;204:52-75.

Available:https://doi.org/10.1016/j.fcr.2016.12.015.

Heinemann AB, Oort PAJV, Fernandes DS, Maia AHN. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation. Agrometeorology. 2012;71(4): 572-582.

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT. The DSSAT cropping system model. European Journal of Agronomy. 2003;18:235-265. Available:http://www.uwyo.edu/plantsciences/afri-cap-legumeadoption/_files/pdfs/dssat.pdf.